Violation de CP dans les mésons B

École de Gif, SPhT Saclay 15-19 septembre 2003

Première partie : Introduction générale et notions de base

Deuxième partie : Désintégration des B, calculs et phénoménologie

J. Charles - CPT Marseille

(tentative de) Bibliographie (succinte)

Cours de la LXVIII École d'été des Houches (1997) The BaBar Physics Book (1998)

http://www.slac.stanford.edu/pubs/slacreports/slac-r-504.html
CP Violation (Branco, Lavoura & Silva, 1999)
CP Violation (Bigi & Sanda, 2000)
Heavy Quark Physics (Manohar & Wise, 2000)
Cours du 30th SLAC Summer Institute (2002)

 \longrightarrow http://www.slac.stanford.edu/econf/CO20805

Première partie

Introduction générale

QCD et saveurs lourdes

Modèle Standard et au-delà

Introduction générale

Le mélange des quarks

Modèle Standard : l'interaction faible mélange les saveurs de quarks — bi-diagonalisation sur la base des états propres par la matrice de Cabibbo-Kobayashi-Maskawa (CKM) :

$$V_{\mathsf{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Cette matrice unitaire est complexe ($V_{ub} \propto |V_{ub}| e^{-i\gamma}$) dès qu'il y a au moins trois générations de fermions massifs

source de violation de la symétrie CP

Hiérarchie et Triangle d'Unitarité

forte hiérarchie de la matrice CKM : couplages diagonaux $\propto 1$ lère \leftrightarrow 2ème (resp. 2ème \leftrightarrow 3ème) génération $\propto \lambda \sim 0.22$ (resp. $\propto \lambda^2$) couplages 1ère \leftrightarrow 3ème génération $\propto \lambda^3$

unitarité CKM \Rightarrow six triangles dans le plan complexe, quatre sont quasiment plats, deux sont quasiment dégénérés

En se désintégrant, le quark b produit des quarks légers des deux premières générations

 \longrightarrow asymétries CP potentiellement d'ordre un

Baryogenèse : l'origine de la violation de CP macroscopique n'est pas connue!

 \longrightarrow nouvelles sources de violation de CP $\ref{eq: CP}$

 \longrightarrow effets mesurables au niveau des particules élémentaires $\ref{eq:product}$

Le mélange $B^0 - \overline{B^0}$

Du point de vue de l'interaction faible, B^0 et $\overline{B^0}$ possèdent les mêmes nombres quantiques \Rightarrow mélange et levée de dégénérescence

états propres de masse

$$B_{H,L} \rangle = \boldsymbol{p} \left| B^{\mathbf{0}} \right\rangle \mp \boldsymbol{q} \left| \overline{B^{\mathbf{0}}} \right\rangle$$

évolution temporelle

$$i\frac{\mathrm{d}}{\mathrm{dt}}\left[\left|\frac{B^{0}(t)}{B^{0}(t)}\right\rangle\right] = \left[M - \frac{i}{2}\Gamma\right]\left[\left|\frac{B^{0}(t)}{B^{0}(t)}\right\rangle\right]$$

en pratique $|\Gamma_{12}| << |M_{12}|$ d'où

$$q/p = -\sqrt{M_{12}^*/M_{12}}$$

l'interaction faible (forte) viole (conserve) la symétrie CP : $M_{12} \neq$ (faible) × (fort), $M_{12}^* \neq$ (faible)* × (fort)

q/p est un rapport d'éléments de la matrice CKM

$$\frac{q}{p}\Big|_{B_d} = \frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*} \simeq e^{-i2\beta} \quad \left. \frac{q}{p} \right|_{B_s} = \frac{V_{tb}^* V_{ts}}{V_{tb} V_{ts}^*} \simeq e^{-i\mathcal{O}(\lambda^2)}$$

Les trois types de violation de CP

dans le mélange :

$$A_{SL} = \frac{\Gamma(\overline{B^0} \to \ell^+ X) - \Gamma(B^0 \to \ell^- X)}{\Gamma(\overline{B^0} \to \ell^+ X) + \Gamma(B^0 \to \ell^- X)} = \frac{1 - |q/p|^4}{1 + |q/p|^4}$$

Dans le Modèle Standard, |q/p| - 1 est supprimé par Im (Γ_{12}/M_{12}) \longrightarrow observable sensible à la Nouvelle Physique !

Les trois types de violation de CP

dans le mélange :

$$A_{SL} = \frac{\Gamma(\overline{B^0} \to \ell^+ X) - \Gamma(B^0 \to \ell^- X)}{\Gamma(\overline{B^0} \to \ell^+ X) + \Gamma(B^0 \to \ell^- X)} = \frac{1 - |q/p|^4}{1 + |q/p|^4}$$

dans la désintégration :

$$\Gamma(B^0 \to f) \neq \Gamma(\overline{B^0} \to \overline{f})$$

dans l'interférence entre le mélange et la désintégration :

$$a_{CP}(t) = \frac{\Gamma(\overline{B^0}(t) \to f_{CP}) - \Gamma(B^0(t) \to f_{CP})}{\Gamma(\overline{B^0}(t) \to f_{CP}) + \Gamma(B^0(t) \to f_{CP})}$$
$$= -\frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \cos \Delta mt + \frac{2\mathrm{Im}\lambda_f}{1 + |\lambda_f|^2} \sin \Delta mt$$

où
$$\lambda_f = \eta_f(q/p)(ar{A}_{ar{f}}/A_f)$$

Dans cette expression, le coefficient de COS Δmt est l'asymétrie directe, alors que le coefficient de Sin Δmt résulte de l'interférence

Le cas d'école un seul couplage faible dans l'amplitude : $A \propto V_{CKM} \times {\rm QCD}$ alors

$$a_{CP}(t) = \operatorname{Im}\left(\frac{V_{CKM}^*}{V_{CKM}} \times \frac{\mathsf{QCD}}{\mathsf{QCD}}\right) \sin \Delta m t$$

La désintégration $B_d \to J/\psi K_S$ faire interférer $B^0 \to J/\psi K_S$ avec $B^0 \to \overline{B^0} \to J/\psi K_S$ diagramme en arbre dominant

$$a_{CP}(t) = -\operatorname{Im}\left(\frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*}\right) \left(\frac{V_{cb} V_{cs}^*}{V_{cb}^* V_{cs}}\right) \left(\frac{V_{cs} V_{cd}^*}{V_{cs}^* V_{cd}}\right) \sin \Delta m t$$
$$= \sin 2\beta \sin \Delta m t$$

le diagramme pingouin introduit les couplages du triangle $V_{ub}V_{us}^* + V_{cb}V_{cs}^* + V_{tb}V_{ts}^* = 0$

 \longrightarrow suppression par $|V_{ub}V_{us}^*/(V_{tb}V_{ts}^*)| \sim 1/50$ \longrightarrow suppression par la dynamique de QCD ($1/N_c \rightarrow \infty$)

 \longrightarrow diagramme négligeable !!

Ajustement global des paramètres

 \longrightarrow plusieurs groupes dans le monde, différentes approches statistiques Le problème principal reste le traitement des erreurs théoriques (souvent dominantes)

Si un(e)(s) théoricien(ne)(s) di(sen)t $x_{th} = 10 \pm 2$, la valeur $x_{th} = 7$ est-elle totalement exclue? Si non, quel est le « degré de confiance » que l'on peut lui accorder?

... pas de réponse ...

ingrédients de l'ajustement global « standard » $|V_{ub}/V_{cb}|, \Delta m_{d,s} \epsilon_K, \sin 2\beta$

QCD et saveurs lourdes

Interaction de Fermi et développement en produits d'opérateurs (OPE)

Rappel : interaction faible par courant chargé

$$g^{2} \int d^{4}x \, \left[\bar{q}_{1}(0) \gamma_{\mu,L} q_{2}(0) \right] D_{W}^{\mu\nu}(x) \left[q_{3}(x) \gamma_{\nu,L} q_{4}(x) \right]$$
$$D_{W}^{\mu}(x) = \int d^{4}q \, e^{iqx} \frac{ig^{\mu\nu}}{q^{2} - M_{W}^{2} + i\epsilon}$$

À basse énergie : $q^2 << M_W^2 \longrightarrow$ interaction de Fermi :

 $\frac{g^2}{M_W^2} \left[\bar{q}_1(0) \gamma^{\mu} (1 - \gamma_5) q_2(0) \right] \left[\bar{q}_3(0) \gamma^{\nu} (1 - \gamma_5) q_4(0) \right]$

!! attention aux divergences $!! \Rightarrow$ renormalisation

D'une manière générale, à l'ordre dominant de l'interaction faible et une fois intégrés le W et le top, toute la dynamique est contenue dans des éléments de matrice hadroniques d'opérateurs locaux

En ce qui concerne le B, il y a deux (ou plus) échelles distinctes implicitement contenues dans ces éléments de matrice : m_b , Λ_{QCD} ...

 \longrightarrow difficile pour les simulations sur réseaux qui doivent décrire une large gamme de masses/impulsions

 \longrightarrow présence potentielle de grands logarithmes $\log(m_b/\Lambda_{\rm QCD})$

Premier exemple : le mélange $B^0 - B^0$

$$\left\langle \overline{B^0} \right| \overline{b} \gamma^{\mu} (1 - \gamma_5) d\overline{b} \gamma_{\mu} (1 - \gamma_5) d \left| B^0 \right\rangle \propto m_B^2 f_B^2 B_B$$

Les méthodes de calcul sur réseau sont bien adaptées à cet élément de matrice, mais les incertitudes restent grandes. Elles se compensent en partie dans l'estimation du rapport $\Delta m_d/\Delta m_s \propto |V_{td}/V_{ts}|^2$

Deuxième exemple : $B_d \rightarrow \pi^+\pi^-$

diagramme en arbre $\propto V_{ub}V_{ud}^* \longrightarrow -\sin 2\alpha \sin \Delta mt$ diagramme þingouin $\propto V_{(c,t)b}V_{(c,t)d}^*$

$$a_{CP}(t) = a_{dir} \cos \Delta m t - \sqrt{1 - a_{dir}^2 \sin 2\alpha_{eff}} \sin \Delta m t$$

le pingouin est supprimé dynamiquement : 5-10% ? MAIS $|V_{tb}V_{td}/V_{ub}V_{ud}| \simeq 3$

 \longrightarrow þingouin a þriori non négligeable !

$$\frac{q\overline{A}}{p\overline{A}} = \frac{Te^{+i\alpha} + P}{Te^{-i\alpha} + P}$$

trois observables

 $\Gamma_{\pi\pi}$ a_{dir} $\sin 2\alpha_{eff}$

 $\begin{array}{c|c} \text{sattémereq} & \text{sattémere} \\ |T| & |P| \end{array}$

il y a une seule inconnue réelle, par exemple |P/T|

 δ

$$\cos(2\alpha - 2\alpha_{\text{eff}}) = \frac{1}{\sqrt{1 - a_{\text{dir}}^2}} \left[1 - \left(1 - \sqrt{1 - a_{\text{dir}}^2} \cos 2\alpha_{\text{eff}}\right) \left|\frac{P}{T}\right|^2 \right]$$

 $\boldsymbol{\alpha}$

problème : |P/T| est un objet beaucoup plus compliqué que B_B !

QCD : quelques rappels

théorie quantique des champs relativiste et non perturbative

théorie de jauge : groupe de couleurs SU(3)

liberté asymptotique : $lpha_s(\mu o \infty) o 0$

symétrie chirale si masses nulles ; symétrie vectorielle si masses égales

pas de solution générale connue ... (sauf d=2 , $N_c=\infty$)

HQET & $|V_{cb}|$

quark lourd de masse m_Q subissant des interactions molles $p << m_Q \Rightarrow$ invariance spin/saveur

méson lourd $\overline{Q}d\sim$ atome hydrogénoïde

conséquence : $D \sim D^* \sim B \sim B^*$, donc transition $\left[B^{(*)} \to D^{(*)}\right] \sim [B \to B]$

à recul nul $\left[B \to D^{(*)} \ell \nu_{\ell}\right] \sim 1$

$\Gamma(B \to D^{(*)} \ell \nu_{\ell}) \sim |V_{cb}|^2 \times (calculable)$

 $|V_{cb}|_{ ext{excl}}$ est connu à mieux que 5%

La théorie effective des quarks lourds (HQET) est l'outil qui permet l'implémentation du développement en $1/m_Q$

$$h_{v}(x) = e^{im_{Q}v \cdot x} \frac{1+\psi}{2} Q(x)$$
$$\mathcal{L}_{QCD} = \bar{Q}(i\mathcal{D} - m_{Q})Q + \dots$$
$$\mathcal{L}_{HQET} = \bar{h}_{v} [iv \cdot D] h_{v} + \mathcal{O}(1/m_{Q}) + \dots$$

bref, HQET c'est bien, mais...

HQET : ce qui est moins drôle

c'est une théorie de quarks \longrightarrow non soluble !

le b est le seul quark lourd (presque) idéal : le c est trop léger $\Lambda_{QCD}/m_c \sim 0, 3..1$, et le top n'hadronise pas...

ne s'applique pas a priori aux interactions dures du quark lourd (bien que...)

Outils de calcul : simulations sur réseau intégrale de chemin discrétisée

en principe, pas d'hypothèse ad hoc : on peut s'approcher autant qu'on veut du résultat exact de QCD

champ d'application assez varié

possibilité de faire varier les paramètres fondamentaux : masses, couplage

techniquement complexe ; numériquement coûteux ; hypothèses additionnelles

méthode numérique : on sait « combien » mais on ne sait pas « pourquoi »

certaines classes d'objets hadroniques sont conceptuellement (presque) hors d'atteinte, par exemple les transitions non leptoniques

Outils de calcul : règles de somme de QCD dualité quark-hadron

champ d'application très varié

méthode analytique : on « voit » la dépendance par rapport aux paramètres

techniquement assez simple

pas de limite connue de QCD dans laquelle les règles de somme deviendraient exactes

formalisme pas toujours bien défini

parfois, instabilité du résultat

Outils de calcul : modèles de quarks nombre fixe de constituants

conceptuellement simple : mécanique quantique non relativiste

possibilité de respecter des propriétés subtiles : covariance, lois d'échelle, symétries...

idéal pour construire des « modèles jouet »

connexion impossible avec la théorie des champs

beaucoup de formalismes et modèles différents

erreurs très difficiles à évaluer

Modèle Standard et au-delà

Tester le Modèle Standard

On aimerait que le secteur de la violation de CP microscopique soit sensible aux sources non standard indirectement mises en évidence par la baryo/leptogenèse Quelle procédure adopter pour tester le Modèle Standard et contraindre la Nouvelle Physique ? Un exemple

$$Obs_{k} = Obs_{k}|_{SM}(\rho, \eta)$$
$$\Rightarrow (\rho, \eta) = (\rho, \eta)_{eff}$$

mais on peut aussi avoir

$$Obs_{k} = Obs_{k}|_{SM} (\rho, \eta) + Obs_{k}|_{NP} (a_{i})$$
$$\Rightarrow (\rho, \eta) = (\rho, \eta)_{SM}$$

ll y a alors quatre possibilités

I. $(\rho, \eta)_{eff} \simeq (\rho, \eta)_{SM}$ et $a_i = \mathcal{O}(1)$ il y a conspiration entre les différents a_i ou bien les observables sont peu sensibles à la Nouvelle Physique

II. $(\rho, \eta)_{eff} \simeq (\rho, \eta)_{SM}$ et $a_i << 1$ Ia Nouvelle Physique est une correction par rapport au Modèle Standard

III. $(\rho, \eta)_{eff} \neq (\rho, \eta)_{SM}$ et $a_i = O(1)$ il y a conspiration entre le Modèle Standard et la Nouvelle Physique

IV. $(\rho, \eta)_{eff} \neq (\rho, \eta)_{SM}$ et $a_i << 1$ les observables sont très sensibles à la Nouvelle Physique

Deuxième partie

Secteur conservant CP

Secteur violant CP

Applications phénoménologiques

Secteur conservant CP

Détermination inclusive de $\left|V_{cb} ight|$

Dans la limite lourde, l'énergie libérée dans la transition $B \to X_c \ell \bar{\nu}_\ell$ est grande par rapport à $\Lambda_{\rm QCD}$

désintégration très rapide du quark b \Rightarrow les quarks dans l'état final hadronisent seulement « après »

Outil théorique : OPE en $1/m_b$

$$\begin{split} \Gamma(B \to X_c \ell \bar{\nu}_\ell) &\sim \sum_{X_c} \int d[.] |\langle X_c \ell \bar{\nu}_\ell | O_{sl} | B \rangle|^2 \\ &\sim \mathrm{Im} \int d^4 x \, e^{-iq \cdot x} \left| \langle B | T J_{bc}^{\dagger}(x) J_{bc}(0) | B \rangle \right|^2 \end{split}$$

- ullet pas de correction en $1/m_c^n$!
- ullet les corrections en $1/m_b$ commencent à l'ordre deux
- \bullet ces corrections sont décrites par des éléments de matrice $\langle B|$ blabla $|B\rangle$ pris dans la limite lourde

bon contrôle des corrections dominantes ; à l'ordre trois problème plus difficile

 $\longrightarrow |V_{cb}|_{incl}$ connu à environ 2-3%

Détermination inclusive de $|V_{ub}|$

En principe, même méthode que pour $\left|V_{cb}
ight|$

MAIS problème expérimental : le bruit de fond $b \to c$ (cent fois $b \to u$) doit être enlevé en coupant une partie de l'espace des phases

conséquence : la somme sur les X_u n'est pas complète, la dualité quark-hadron n'est pas (ou difficilement) applicable, l'OPE pose des problèmes

 \longrightarrow beaucoup de controverses !

«Of ab arbro'l ab ruarra

La désintégration radiative $B o X_s \gamma$

Processus pingouin (une boucle), calculable ordre par ordre en $1/m_b$ grâce à l'OPE

très bien mesuré à $\pm 10\%$ et en parfait accord avec le Modèle Standard \Rightarrow fortes contraintes sur la Nouvelle Physique, du moins sur les couplages gauche-gauche

de même l'asymétrie CP compatible avec zéro donne de fortes contraintes

autres modes inclusifs rares : $B \to X_s \nu \overline{\nu}$, $B \to X_s \ell^+ \ell^-$, idem avec X_d ...

Transitions exclusives lourd à léger

Par rapport à $B \to D^* \ell \overline{\nu}_{\ell}$, la transition $B \to \pi(\rho) \ell \overline{\nu}_{\ell}$ est beaucoup moins contrainte par la symétrie des quarks lourds symétrie de saveur \Rightarrow permet (?) de passer de $D \to \pi(\rho) \ell \overline{\nu}_{\ell}$ à $B \to \pi(\rho) \ell \overline{\nu}_{\ell}$ à $E = v \cdot p_{\pi(\rho)}$ fixé symétrie de spin \Rightarrow relie $B \to \pi(\rho)\gamma$ et $B \to \pi(\rho)\ell^+\ell^-$ à $B \to \pi(\rho)\ell \overline{\nu}_{\ell}$ à $E = v \cdot p_{\pi(\rho)}$ fixé

les éléments de matrice sont de la forme

$$\langle \pi | \bar{q} \Gamma b | B \rangle \sim \mathsf{FF} \left[q^2 = (p_B - p_\pi)^2 \right]$$

il y a six facteurs de forme pour les courants vectoriel et axial, et quatre pour les courants tensoriel et pseudo-tensoriel

dans la limite $m_b \to \infty$ et dans la majeure partie de l'espace des phases, le courant produit un quark léger très rapide par rapport au quark lourd \Rightarrow deux types de contributions :

 \bullet contribution molle (mécanisme de Feynman) : le quark léger fluctue peu par rapport à la trajectoire de genre lumière définie par $n^\mu=p_\pi^\mu/E$

• contribution dure : il y a échange d'un gluon dur ($\propto \alpha_s(E)$) entre les deux lignes de quarks

même suppression en puissance de 1/E des deux contributions \Rightarrow en première approximation, la contribution dure est négligeable

Théorie effective pour un quark léger « rapide »

idée centrale : les échanges mous conservent le quadrivecteur de genre lumière n HQET $\longrightarrow \mathsf{LEET}$

$$q_n(x) = e^{iE n \cdot x} \frac{\# \psi}{2} q(x)$$

 $\mathcal{L}_{\text{LEET}}^{\text{naive}} = \bar{q}_n \left[i \psi n \cdot D \right] q_n + \mathcal{O}(1/E) + \dots$

 \longrightarrow invariance spin/saveur!

 $\begin{array}{l} \mbox{Prédictions}: \mbox{HQET} + \mbox{LEET} \longrightarrow \mbox{sept relations entre les facteurs de forme};\\ \mbox{ne subsiste qu'un unique facteur de forme par état final} \end{array}$

 $B \to \pi, B \to \rho_{\perp}, B \to \rho_{/\!\!/}$

malheureusement, pas de condition de normalisation comme pour $B \to D^{(*)}$ $\not \to V_{ub}$ cette forme naïve du lagrangien est mal définie dans l'infrarouge (interactions avec modes colinéaires) \longrightarrow nécessité d'un formalisme plus rigoureux : SCET

des aspects de la théorie restent à explorer (états asymptotiques ?), mais beaucoup de progrès ont été faits qui permettent de faire des prédictions à confronter avec l'expérience

application à $B \to K^{(*)}\ell^+\ell^-$ (électropingouin $\propto V_{tb}V_{ts}^*$) : l'asymétrie avant-arrière s'annule à une certaine valeur de q^2 calculable dans la limite HQET-LEET \longrightarrow sensibilité à la Nouvelle Physique si le zéro n'est pas trouvé là où on l'attend

autres modes intéressants : $B \to K^* \gamma$, $B \to \ell \bar{\nu}_\ell \gamma$...

Secteur violant CP

Transitions non leptoniques : Factorisation(s)

Idée : dans $B \to \pi\pi$, considérer le pion émis comme une paire de leptons $\langle \pi\pi | [\bar{q}\gamma^{\mu}_{L}q] [\bar{q}\gamma_{\mu,L}b] | B \rangle \sim \langle \pi | \bar{q}\gamma^{\mu}\gamma_{5}q | 0 \rangle \times \langle \pi | \bar{q}\gamma_{\mu}b | B \rangle$ argument de transparence de couleur (Bjorken) : les pions sont très éloignés au moment où l'hadronisation devient effective

la factorisation est exacte dans la limite $N_c = \infty$ Problèmes :

• $N_c = 3!$

• seul le terme dominant en $1/N_c$ se factorise : $\Gamma(\pi^+\pi^-) = 2\Gamma(\pi^+\pi^0)$, $\Gamma(\pi^0\pi^0) = 0$. Idem pour les modes $D\pi$, et $J/\psi K_S$ vs. $D_s\overline{D}$

ullet les pingouins sont supprimés par ${f 1}/N_c$

bref, la physique intéressante se trouve dans les « corrections » non factorisables...

Factorisation naïve

on garde tous les termes factorisables, quel que soit leur ordre en $1/N_c$

prédictions : suppression de couleur $\sim (0.2 - 0.25)^2$; pingouins plutôt petits $\sim 0.05 imes V_{
m CKM}$; phases d'interaction dans l'état final nulles

problèmes : dépendance explicite par rapport à l'échelle de renormalisation ; suppression de couleur en mauvais accord avec les données $(J/\Psi K_S \text{ vs. } D_s \overline{D}, D^0 \pi^0(\rho)^0 \text{ vs. } D^{\pm} \pi^{\mp}(\rho^{\mp}))$; pingouins anémiques (rapport $K\pi/(\pi\pi)$)...

Factorisation à la BBNS Beneke-Buchalla-Neubert-Sachrajda

formalisation de l'argument de Bjorken : dans la limite $m_b \to \infty$, calcul « perturbatif » de tous les diagrammes à un ordre donné (une boucle, deux boucles...), supposant que les gluons sont durs

 \longrightarrow les divergences infrarouges disparaissent

prédictions : assez proches de la factorisation naïve (suppression de couleur et pingouins) ; phases fortes non nulles mais petites, d'ordre α_s (calculable) ou $1/m_b$ (non calculable)

problèmes : preuve diagrammatique ; paramètres mal connus en entrée ; corrections non perturbatives en puissance potentiellement grandes $2m_\pi^2/[(m_u+m_d)m_b]\sim 1$

Progrès : « preuve » de la factorisation à tous les ordres , au moins pour $B \to D\pi$, dans le cadre de la théorie effective SCET (Bauer et al.)

le formalisme de SCET peut aider à contraindre/paramétrer les corrections en puissance

Transitions non leptoniques : méthodes phénoménologiques

ldée : grandes incertitudes au niveau des méthodes de calcul explicite \Rightarrow utiliser le maximum d'informations expérimentales

exemple : analyse de la distribution dans l'espace des phases (angles; masses invariantes); symétries de saveurs (SU(2), SU(3)) pour connecter les amplitudes dans différents processus

problème : souvent la symétrie de saveur ne suffit pas ; il faut faire des hypothèses dynamiques qui consistent à négliger des classes de contributions

Transitions non leptoniques : méthodes phénoménologiques

ldée : grandes incertitudes au niveau des méthodes de calcul explicite \Rightarrow utiliser le maximum d'informations expérimentales

exemple : analyse de la distribution dans l'espace des phases (angles; masses invariantes); symétries de saveurs (SU(2), SU(3)) pour connecter les amplitudes dans différents processus

problème : souvent la symétrie de saveur ne suffit pas ; il faut faire des hypothèses dynamiques qui consistent à négliger des classes de contributions

Applications phénoménologiques

La désintégration $B \to \pi \pi$ et l'angle α

les transitions $B \to K\pi$ sont dominées par les pingouins, à cause des couplages CKM : $|V_{tb}V_{ts}|$ par rapport à $|V_{ub}V_{us}|$; expérimentalement, le rapport $K\pi/(\pi^+\pi^-)$ montre l'existence des pingouins

sans hypothèse théorique, on ne sait pas extraire la valeur de lpha à partir des observables des modes $B o \pi\pi$

analyse de Gronau-London : repose sur la symétrie d'isospin ; $I(\pi\pi) = 0, 2$ et $\Delta I(H_{\text{eff}}) = 1/2, 3/2 \Rightarrow$ relation triangulaire entre les trois modes

$$A^{+0} - A^{00} = (1/\sqrt{2})A^{+-}$$

(et canaux CP-conjugués)

 $I(\pi^{\pm}\pi^{0})=2$ et les pingouins QCD sont $\Delta I=1/2$

 \Rightarrow l'angle entre $B^- \to \pi^- \pi^0$ et $B^+ \to \pi^+ \pi^0$ est 2α avec les rapports d'embranchement, construire les deux triangles CP-conjugués dont l'angle relatif est donné par l'asymétrie $\mathrm{Im}(q/p)(\overline{A^{+-}}/A^{+-})$, d'où l'angle 2α entre les deux côtés correspondant aux modes chargés

Problèmes :

il y a δ solutions pour l'angle 2α (ambiguïtés discrètes) les triangles sont presque plats : $\mathcal{B}(\pi^0\pi^0) << \mathcal{B}(\pi^+\pi^-)$

 \longrightarrow étendre la symétrie de saveur à SU(3) pour utiliser les modes étranges MAIS sauf à utiliser les modes du B_s (ex. $B_s \rightarrow K^+K^-$) il faut en général négliger certaines topologies (échange ou annihilation) ; de plus la brisure de SU(3) est mal contrôlée

autres possibilités : analyse en masses invariantes (+ isospin) dans $B_d \to \rho \pi \to \pi^+ \pi^- \pi^0$ (Snyder-Quinn) ; analyse d'isospin dans $B \to \rho \rho$

l'idéal du théoricien calculer tous les paramètres hadroniques qui entrent en ⊫ compte ; par exemple l'approche de BBNS :

La désintégration $B_d o \phi K_S$

uniquement des quarks down dans l'état final \Rightarrow processus FCNC « pur pingouin »

$$A(B_d^0 \to \phi K_S) = V_{ub}^* V_{us} P_u + V_{tb}^* V_{ts} P_t$$

naïvement le premier terme est négligeable : $|V_{ub}^*V_{us}| << |V_{tb}^*V_{ts}|$ et $|P_u/P_t| = O(1)$

$a_{CP}(t) \simeq \sin 2\beta \sin \Delta m t$

processus supprimé dans le Modèle Standard \Rightarrow sensibilité à la Nouvelle Physique comparaison avec Sin $2\beta(J/\psi K_S)$? 2002 : BaBar et Belle ont un signal à 2-3 σ de la valeur attendue... août 2003, BaBar se rapproche du MS, Belle reste à 3 σ !! À SUIVRE !!

Transitions non leptoniques et Nouvelle Physique

L'expression générique

$$A = V_1 M_1 + V_2 M_2$$

$$\overline{A} = V_1^* M_1 + V_2^* M_2$$

est la plus générale possible, même en présence de Nouvelle Physique ! démonstration

$$e^{+i\phi_{NP}} M_{NP} = V_1 M_1 + V_2 M_2$$

$$e^{-i\phi_{NP}} M_{NP} = V_1^* M_1 + V_2^* M_2$$

les M sont des paramètres complexes CP-invariants

 \rightarrow système linéaire de deux équations à deux inconnues

$$M_{1} = \frac{\text{Im}(V_{2}^{*}e^{i\phi_{NP}})}{\text{Im}(V_{1}V_{2}^{*})}M_{NP}$$
$$M_{2} = \frac{\text{Im}(V_{1}^{*}e^{-i\phi_{NP}})}{\text{Im}(V_{1}V_{2}^{*})}M_{NP}$$

le seul effet de la Nouvelle Physique dans la désintégration est de changer le rapport $M_{\rm 2}/M_{\rm 1}$

 \longrightarrow nécessité de bien contrôler ce rapport dans le Modèle Standard

Nouvelle Physique : rappel

quatre possibilités

I. $(\rho,\eta)_{\mathsf{eff}}\simeq (\rho,\eta)_{\mathsf{SM}}$ et $a_i=\mathcal{O}(1)$

il y a conspiration entre les différents a_i

ou bien les observables sont peu sensibles à la Nouvelle Physique

II.
$$(\rho,\eta)_{\mathsf{eff}}\simeq (\rho,\eta)_{\mathsf{SM}}$$
 et $a_i<<1$

la Nouvelle Physique est une correction par rapport au Modèle Standard

III.
$$(\rho, \eta)_{\text{eff}} \neq (\rho, \eta)_{\text{SM}}$$
 et $a_i = \mathcal{O}(1)$

il y a conspiration entre le Modèle Standard et la Nouvelle Physique

IV. $(\rho, \eta)_{eff} \neq (\rho, \eta)_{SM}$ et $a_i << 1$ les observables sont très sensibles à la Nouvelle Physique problème : sans faire l'hypothèse d'un modèle étendu trop spécifique, comment déterminer $(\rho,\eta)_{\rm SM}$?

une possibilité parmi d'autres :

• pas de Nouvelle Physique dans les transitions à quatre changements de saveur ex. $b \to c \bar{u} d, b \to u \bar{c} s, b \to u \bar{u} d (\Delta I = 3/2)$

ullet pas de Nouvelle Physique dans la transition $b
ightarrow c \overline{c} s$

sont autorisées, entre autres, les contributions non standard au mélange $B - \overline{B}$ (module et phase), aux transitions $b \to s\overline{s}s, b \to s\overline{d}d(\Delta I = 0)...$

ALORS en principe on peut déterminer $(\rho,\eta)_{\rm SM}$ avec $\bullet \left|V_{ub}\right|$

- ullet la phase du mélange mesurée dans $B_d o J/\psi K_S$.
- γ déterminé de l'analyse d'isospin dans $B \to \pi(\rho)\pi(\rho)$, ou bien de l'asymétrie dans $B_d \to D\pi$...

pour le moment les données ne sont pas assez précises pour obtenir une bonne contrainte... à suivre !

Conclusion

