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1 Introduction

In 1990 the GIF Summer School addressed the question “Ou et le Higgs?”[1]
The question remains unanswered. In fact, this is THE QUESTION for high
energy physics. It dominates all discussions of the future directions of the
field. Should we build a TeV scale linear collider? What is the future of the
Tevatron collider? What comes after LHC?

Of course “le Higgs” may be ‘les Higgs.” For many theorists, supersym-
metry is an established fact, and thus there are at least five Higgs bosons,
three neutral and two charged. My view on this was expressed, perhaps
inadvertantly, by a colleague, who in introducing another colleague, Bruno
Zumino, co-inventor of supersymmetry said “Supersymmetry has withstood
the test of time, though there is no evidence to support it.” Indeed it has
withstood the test of time because there is so much to like about it. Nonethe-
less, it is prudent to insist upon it being found in experiment. In this summer
school, the Higgs boson and its surrogates will be explored in supersymmetry
and in alternatives to supersymmetry. Still, the proper starting point is the
Minimal Non-SuperSymmetric Model, the MNSSM, and this is the subject
of these lectures.

The Standard Model didn’t burst onto the scene. In crept in, almost un-
noticed. Though the outlines were present in Glashow’s paper [2] of 1961 and
nearly the whole story was there in Weinberg’s [3, 4] 1967 paper, the cross sec-
tion for the fundamental process e"v, — e~ v, wasn’t calculated until a stu-
dent named ‘t Hooft did it in 1971 [5]. The model wasn’t embraced because
it contained neutral weak currents, something known to be absent since there
was no decay like K7, — ptp~. Well, that at least showed that there were
no strangeness-changing decays. The discovery on non-strangeness changing
neutral weak currents by the Gargamelle experiment [6] was circumstantial
evidence that the Glashow-Weinberg-Salam model might well be correct.

What the model did was to provide not a model but a theory of heavy
W bosons. Fermi in his original paper laying out weak interaction theory
already recognized the parallel with electromagnetism. What was needed was
not a neutral massless vector particle, but a charged massive vector particle.
One could always write down such a model, but with the V' — A couplings
to fermions of the weak interactions, the model wasn’t renormalizable. You
couldn’t calculate beyond Born (tree) approximation.

The trick of the Standard Model was to fool the model into believing the
vector particles were massless when they weren’t. This is done by writing



down a model with seemingly massless vector (gauge) particles, but then
providing them with a mass through their interactions with a ubiquitous and
constant field.

This sort of deception is part of a more pervasive phenomenon. When
we write down a theory, we prejudice its interpretation by the choice we
make for the symbols. If we write m we expect this to represent a mass and
if we write ¢ we think it is probably a scalar field, while A, must surely
be the electromagnetic potential. However, the lesson learned in the renor-
malization of the archetypical theory, QED, was that you must always look
to the physical predictions for interpretation. It is not the bare quantities
that we write down that count, but the quantities that ultimately appear in
expressions for physical measurements.

2 Spontaneous Breakdown and the Higgs
Mechanism

2.1 Scalar Field Models with Spontaneous Breakdown

As a simple example of deception, consider a single scalar field ¢ with the
usual sort of Lagrangian

L = 0,00%¢ — %u2¢2 — %Aqs‘* (2.1)

which appears to describe a neutral scalar field with mass p, interacting with
itself, with a coupling X\. Suppose, however, that p? < 0. What does this
theory mean? The potential

1 1
V=i + = Ap! (2.2)
2 2
has a minimum when
2 H2 _ v? 9.3
F=-=73 (2.3)

It is therefore appropriate to define a new field that represents the devi-
ation of ¢ from its value when the potential is minimized. Choosing that to
be v/v/2 (v > 0) rather than its negative, we write

Y
V2
5

p=—7+p (2.4)



In terms of the new field,

1 o 3t TN A
L=350upd"p = g + 120" —\[—5—=p" = 30" (2.5)

What emerges is a new scalar particle with mass squared equal to —2u2 > 0.
The constant term is irrelevant. There are both cubic and quartic couplings.
The cubic coupling arising from the original quartic coupling, where one of
the ¢ fields is replaced by (¢) = v/V/2.

The original model had a symmetry, ¢ — —¢ that is not enjoyed by the
new field p. We had to pick either v/ﬁ or —v/\/§ as the expectation value of
¢ to start our perturbation theory. With that choice, we lost the symmetry.

Consider now an embellishment of the first model. Suppose we have four
real scalar fields, each just like the one above. The Lagrangian is

L= 0,0;0"¢; — %N2¢i¢i - %)\(@@)2 (2.6)

where we have used the usual summation convention.
It is clear that the minimum of the potential energy occurs for

12

i = X

(2.7)
What is the particle content of this theory? We shall have to pick some
direction for the field that gets a vacuum expectation value. Let it be ¢ = 0
and introduce new notation:

Py = 0; ¢i =iyt # 0 (2.8)
Now we can write our Lagrangian quite simply as
2 A
L= —%( ? o) — 5(02 + ;)2 (2.9)
If we write
o=v+p (2.10)

then the terms that do not contain any m; will be just as before. Thus p
again represents a scalar with mass squared —2u2. What about the 7; fields?



To find their masses we need only the terms quadratic in them. These come
from
2 2 2
() - g((0>2 ) = () - §<—% ) (2.11)

But we see then that the quadratic terms all vanish! All three of the m; are
massless scalar fields. What looked like four scalar fields with mass squared
p? (though that couldn’t be right since p? < 0), turned out actually to be one
massive scalar (with mass squared —2%) and three massless scalars. What
is going on here?

This is an explicit example of Goldstone’s Theorem, which states that if
a symmetry is broken spontaneously, every “broken generator” gives rise to
a massless scalar particle. Here we began with four real fields, all equivalent.
The symmetry was O(4). The rotation group O(NN) has N(N —1)/2 genera-
tors, so O(4) has six generators. After the o got singled out, there were just
the three m; that were equivalent. This remaining O(3) has three generators
(its just the rotation group), so we lost (or broke) three generators. There
therefore had to be three massless scalars. And so there were.

We can look at this same model in another way. Instead of thinking of
four equivalent scalars or of a single o and a triplet 7, we can write

(¢+>_L<¢1—i¢2>. 3 _L< b3 + it ) (21
¢ ) V2 \d3—ids)’ ¢ | V2 \—(d1+ i) '
Here we see four particles arranged in a complex doublet, analogous to the
K system.

Finally return to the picture (o, 7). It is a fact of group theory that the
algebra for O(4) is the same as two SU(2)s i.e. two rotation groups. For one

of these rotation groups, it is clear that o is a scalar and 7 is a vector. If we
consider a small rotation

—

e T 1 — s T (2.13)
where 1" are the 3 x 3 rotation matrices, the changes in o and i are

bo=0; om=—ida-T7=—idou X7 (2.14)

What is the other rotation group?



It turns out that if we take a small “new” rotation

e BT 1 5B T (2.15)

we can define its action by
67 = —6B0;  So =087 (2.16)
How can we see that this works? Just calculate the change in 02 + 72:
5(o?+7%) = 2(0d0+7- o)

= 20(6B-R)+7- (—680)] =0 (2.17)
This model also has a discrete symmetry, which we can call parity:

T — —; o—=0 (2.18)

so in this sense we can call m pseudoscalar and o scalar. The two rotation
symmetries can be termed “vector” and “axial,” since the latter mixes the
scalars and pseudoscalars. We see that after o gets a vacuum expectation
value, only the vector symmetry survives.

2.2 Abelian Higgs Model

We've seen that what you see isn’t always what you get. Now we extend
this to gauge theories. The simplest gauge theory is electromagnetism. To
make it interesting there needs to be a charged particle, so let’s use a charged
scalar, whose Lagrangian is

L=0,0'0% — 1*d'¢ — No'9)* (2.19)
The Lagrangian for electromagnetism is

L _i(auAy _0,A) (0" AY — ¥ AP (2.20)

How can we combine these? The answer, of course, is to change

B0 — O + i Ay (2.21)



so that we have
L = (0o —ieA)o (0% +ieA%)p — p*pld — A(¢'9)”
1
_Z(G“A” —0,A,)(0"A” — 0" A¥) (2.22)
Why is this right? Because it gives correctly the laws of quantum mechanics

and agrees with atomic physics. However, we notice that this choice isn’t
random. It has special properties. Consider the transformation

: 1
p—e P@p Ay, = Ay + =00 (2.23)
[#

The Lagrangian is invariant under this gauge transformation. For the history
of gauge transformations in electromagnetic theory, see [7].

So this appears to be a theory of a charged scalar with mass u interacting
with the usual electromagnetic field. However, let’s ask what happens when
p? < 0. First we know that |¢|> will have a non-zero vacuum expectation
value and in fact

2 1
(19) = 5 =
We know even more. Before this happens, the theory is invariant under

2
v
— 2.24
. (224)

¢ — e (2.25)

where ( is a constant. This symmetry is called U(1). It is simply the group
of rotations in the complex plane. It has one generator. But this symmetry
is broken once we pick a value for (¢). So we anticipate that we will find one
massive scalar and one massless scalar. But we are wrong!

Let’s write the old field ¢ in a way that incorporates what we know about
the vacuum expectation value:

6= iﬂf’eix(x)/v (2.26)

But remember that we can change ¢ by a phase that depends on z if we
wish. That just changes A, into some new A,. Use this freedom to get rid
of x! Next, rewrite the Lagrangian:

1 . 1
L = §|(<9a+wz4a)(v+p)l2—§u2(v+p)2



1 1 )
_Z)\(,U + p)4 — ZF,UJJFN
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1 1
= —0,p0%p — —F,, F" Ll
28p8p u +22

24 2.27
1 p°+ (2.27)

The ... indicates cubic and quartic terms, which represent interactions. Re-
markably, what emerges is a massive vector field A,, with mass ev, and a
scalar field, p with mass squared —2u% > 0.

What happened to the massless scalar particle we knew had to be there?
It was eaten by the photon, which thereby became massive and thus needed a
third degree of freedom. This is our paradigm, due to Peter Higgs [8].

2.3 Non-Abelian Gauge Symmetry

Long before Higgs, Glashow, Weinberg, and Salam, C. N. Yang and R. N.
Mills provided [9] the next key ingredient for the Standard Model. The
essential feature of the covariant derivative above is the property that if the
field ¢ is transformed by a space-time dependent function

¢ — e X9 (2.28)

where the charge () is +1 for ¢ then the covariant derivative of ¢, D, ¢ =
(0, +ieQA,) ¢, transforms in the same way:

D,p = (0 +ieQAu)p == (0, +ieQA, + ieéQauX)eiXQ¢
¢ Dy (2.29)

This means that the whole Lagrangian is invariant under this space-time
dependent (local) gauge transformation. The problem solved by Yang and
Mills was how to generalize this to a non-Abelian symmetry.

A general Lie algebra of the sort we care about can be written

[Taa Tb] = Z‘fabchc (230)

where, with suitable normalization, f,. is completely antisymmetric. For the
rotation group O(3), fae = €ape- The abstract algebra will have many rep-
resentations that satisfy the commutation relations. For the rotation group
we know these representations are characterized by 7 and that the dimen-
sionality of the representation is 2j 4+ 1, so that the matrices T are then

10



(27 4+ 1) x (25 + 1). Some particle multiplet transforming under a represen-
tation of this algebra will behave as

¢ — e (2.31)

We are interested in x® that depend on space-time, x. Now the ordinary
gradient will behave as

0,6 — Do X' T ¢ = e XTI 6+ 9,0 X T" (2.32)

We need to add something to d, to fix up this last piece. By analogy with
electromagnetism we guess that the addition must involve the x*. To take
care of the a index, we need to have gauge fields labeled with the same index:
A, Thus there must be as many gauge fields as there are generators of the
group. Now once we have Aj, we can’t combine it with 9, until we get rid
of the a index, by writing T*Af. Now if x* didn’t depend on = we could use
just the properties of the group to deduce how A} transforms:

T-A, — e ™XTT. AT (2.33)
where x - T'= x*T*, T - A, =T*Aj. So lets try the following: define 04, by
T-A,—eXTT-A,ex" +T-64, (2.34)
and suppose that the covariant derivative we want is
Db = (3, +igT - A,)o (2.35)
Then

Dup — (0p+ige ™ TT - AeX" +igl - §A,)e X"
= efl.X~Talu¢ —+ (a}uefl.X~T)¢ + e*iX-TigT . Au¢ =+ ZgT . 5Au€7iX.T¢
(2.36)
so we take .
i
g

(It isn’t clear that this definition of §A4, really works, since the right hand
side seems to depend on which representation of the T’s we are using. That
is, it looks like the change in A, depends on the kind of scalar particles we

T-64,=—(9,eXT)ex" (2.37)

11



have. What would we do if we had two different kinds of scalars? In fact,
despite its appearance, the expression gives the same 0A, no matter what
representation we have. You may find it entertaining to prove this. What is
required is to show that the express on the right hand side can be written
entirely in terms of Y = 0,7 - x and its commutators with X =7 - x)

With this rule for the transformation of A, we thus find

D¢ — e XTD,¢ (2.38)

The next step is to find the field strength F),, to associate with A, so
that it will be well behaved:

T-F, —e™'T. F,ex” (2.39)

where 71" are the representation matrices for any representation. Now we see
from Eq.(2.38) that . .
D, — e XTD, exT (2.40)

so consider simply
D,,D,| =190, T-A,—0,T-A,+ig[T-A,T- A =igT-F, (241)
This must transform also as
[D,,D,] — ¢ *T[D,, D,)JexT (2.42)
so this choice of

T-F, = 0,T-A,—8,T -A,+ig[T-A,T-A)
Fp, = 9,45 — 0,A% — gfuncALA; (2.43)

works just right.

2.4 Non-Abelian Higgs Model

Now we combine these ingredients, writing a Yang-Mills theory coupled to
a set of scalars ¢ that transform according to 7', a representation of some
non-Abelian group.

L= F5F 4 L (D,0) Dro — w06 — A(o'o)  (244)

12



As usual, we take p? < 0, and find that at the minimum

(2.45)

Now consider the convariant derivative D, applied to this vacuum expecta-
tion value (which we take to be constant, independent of space or time):

Dy(¢) = igALT*($) (2.46)

For each a, which labels a generator of the group, T%(¢) is a column vector.
In the Lagrangian we find a term quadratic in the A’s

SO AL (T (T46) = Sl Ag AW (2.47)

that is, there is a mass-squared matrix for the vector particles A. To find the
physical vector particles and their masses we need to diagonalize this matrix.
However, there is one observation we can make right away. Suppose we can
write

T-A,=TA)+) T Ay (2.48)
al
where the linear combination of generators 7° has the property

T%¢) = 0 (2.49)
Then the mg, entry is zero and so is m2, = mg,. That means that A)
represents a massless field, despite the Higgs mechanism.

3 Standard Model

To make a model of electrodynamics and weak interactions we need both a
neutral gauge boson, the photon, and charged gauge bosons, the Ws. The
most economical approach would be to start with a group that has three
generators, SU(2). This actually doesn’t work and instead the answer turns
out to be that the group is SU(2) x U(1). The three generators of the SU(2)
are called T and the generator of the U(1) is called Y/2 for historical reasons.
The Gell-Mann Nishijima relation connects the third component of isospin,
the hypercharge (baryon number +strangeness), and the electric charge. In

13



modern language, the Gell-Mann Nishijima relation follows simply from the
quantum numbers of the first three quarks, which satisfy

Q=T+Y/2 (3.1)

We call T weak isospin and Y weak hypercharge. We shall arrange that the
analog of the Gell-Mann Nishijima relation is true. One thing that is new
here is that the weak interactions, which have a V' — A character, interact
with the left-handed fermions, not the right-handed fermions. Thus the
left-handed and right-handed versions of a fermion will have different weak
quantum numbers. According to our previous discussion we need to have a
scalar multiplet with

Q) =0 (3.2)

so that the photon will remain massless.

Because we really have two independent symmetries, we can have two
independent coupling constants, g and ¢’. We call the gauge fields associated
with the SU(2) W and the that associated with the U(1), B. Then the

covariant derivative is
. = =g . IY
D, =0,+igT - W, +ig 53“ (3.3)

We rewrite this as

. g =1 Y
D, =0, + ZE[TJ’W: + T W, T+ igT3Ws, + zg'gBu (3.4)

We make the physical interpretation
Q=T+Y/2 (3.5)

For the scalar field we use the complex doublet described above. The

~ 1
generators 1" are just 55.

(@“)ZL(%—@%). s :L< $s + iy > (56)
@0 V2 \ s —igy)’ —¢ V2 \ = (o1 + idy) '
We define the value of Y on the doublet to be 1. This is consistent with the
charges implied by the symbols ¢t and ¢°.

14



The full Lagrangian is
1 v 1 v T 2 1f T 412

Here W# and B* are the gauge covariant field strengths defined previously.

We still have the freedom to perform gauge transformations. First we
use the rotation symmetry to make ¢ have only a “down” component. Next
we use the U(1) to change the phase so the field is real. From our previous
examples we know that if ;2 < 0, we will have a minimum of the potential
energy if (¢) = v/v/2. Assemblying all this, we write

@;) 7 % (v +0p(x)> 35

2
2 —HK
= — 3-9

The field p(z) represents a scalar particle, the Higgs boson.

with

3.1 Gauge Bosons

To find the mass squared matrix of the vector bosons we compute

Y

B igWtv/2 (3.10)
—i2Ws +i2EB '
It is easy now to find
2,2 2 12,2 '
g _ L @+ g% gWs —g'B,
D (o) (D*(p)) = Z—W W 3.11
(Do) (D) = =, + < (\/W) (3.11)
The first term provides the masses for W¥:
2,2
M2, = % (3.12)
while the second provides the mass
2 12y, 2
M2 = w (3.13)

15



for
Z = cos Oy W3 — sin Oy B

while the orthogonal combination
A = cos by B + sin0,W3

is the massless photon.

We have defined the traditional weak mixing angle, sin 8y, by

!/

g

Now let’s rewrite the covariant derivative using

sin 9W =

Wy = sinw A+ cosby 2
B = cosOyA—sinby 2
This gives us

9

V2

Y
—l—ig'?[cos Ow A — sin Oy 7|

D, = 0,+i

— O+ i-L[TW AT W, |+ —2—(Ty — Qsin® O) Z,

V2 cos Oy
+igsin Oy QA,
from which we deduce
00 1 1 n 1
e = gsin Oy ; — ==+ —
g w5 o2 2 g2

3.2 Fermions in the Standard Model

Finally, we need to make contact with fermions. The Dirac equation

(i —m)ip =0

becomes

(ip—m)p =0

16

[TTW, + T~ W] +igTs[sin Oy A 4 cos Oy Z]

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)



and there is a term in the Lagrangian

L=5(D - m)y (3.22)

The ¢ multiplets for the Standard Model look like this: For left-handed
fermions we have doublets
vy,
( ) (3.23)

€L
while for right-handed fermions we have SU(2) singlets. When we say left-
handed and right-handed we really mean

1 1
er = 5(1 — 75)€; er = 5(1 + vs5)e (3.24)
These represent left-handed and right-handed particles only when the parti-
cles are ultrarelativistic.

In order to get the electric charge to come out right we need to make the
following assignments:

er, €ER vy, ury, UR dL dR
T; [-1/2 0 1/2 1/2 0 —-1/2 0

Y/2|—-1/2 -1 —1/2 1/6 2/3 1/6 —1/3
Q | -1 —1 0 2/3 2/3 —1/3 —1/3

(3.25)

The mass of a fermion ordinarily arises from an interaction ma), but we
can’t use this. The reason is that actually

ee = erep + erey, (326)

but each term on the right combines a weak SU(2) doublet with a weak
SU(2) singlet. We can’t make a weak isosinglet this way. We would ruin the
SU(2) invariance, which is needed to make the model work. The solution is
to use the scalar field and write a “Yukawa” coupling: We write the doublets

() a=() = () =) e

17



and compose

Ly ukawa = ge[LHer + ERHTL] + 9a|QHdR + ERHTQ] + 9u[QH ur + URHCTQ]

(3.28)

When the scalar field takes on its vacuum expectation value, these terms
generate masses:

v —
'Cfermion masses — ﬁ[geée =+ gddd + guﬂ’d] (329)

so that the Yukawa couplings are related to the fermion masses by

_9v

V2

What about v?7 It is actually already determined by the weak interac-
tions. The coupling of the charged W to the fermions comes from the gauge
interaction

(3.30)

mf:

f[%T‘W‘]L (3.31)

which gives terms like
_g_ -
—u, W v 3.32
\/EHL L ( )

The weak interaction is the result of W exchange and there is a factor of
1/m3; for its propagator. The interaction responsible for y decay is thus

(%) T = e (1= 7a)e (3.33)

Comparing with the traditional weak interaction Lagrangian

G
L= "Zan(1 — )7 (1 — vs)e (3.34)

V2

we conclude that

GF g2 1
= = = 3.35
V2 8ME 202 (3:35)
SO
v = 246 GeV (3.36)

18



4 Decays of the Higgs Boson

4.1 Decays into Gauge Bosons

The interaction between the Higgs boson and the gauge fields is prescribed
by the covariant derivative:

ig R
D,p = [au+ﬁ(T+Wj+T W)

ig P : 0\ 1
p— (T3 — @Qsin®Ow)Z, + ieQA,] (v N p> 7

(o) (4.1)
V2 \0up = 555 Zu(v +p)
Thus
T(Dw 1 92 + 2 Iz 92 iz 2

(4.2)
In addition to the masses of the W and Z, and the kinetic energy term for
the Higgs boson, this determines the interaction between the Higgs and the
Ws and Zs. Note that there are no couplings to the photon. The trilinear
and quadrilinear couplings are given by

2
g _ 1
E(Up + 02 /2)WW T+ mzuzu] (4.3)

Now the decay H — W™~ has the matrix element
—iM = i(g*v/2)e" - € = igmwe’ - € (4.4)

according to the rules in Appendix B. From Appendix A, we see that the
rule for the sum over polarizations is

4ot
« b,p,

E €€y = —Guw + TlrLL—Q (4.5)
[ w

so if we sum over both polarizations,

+ .0t — oy —V
p,p, vy DD
IM? = ¢*miy <9W_ :1 > <gu - 2 >

2
w

19



w+ A

Figure 1: The decays of the Higgs into W and Z pairs are the dominant ones
when they are kinematically allowed.

- (i)

am 2 mé,
(1 — 4wy g ) (4.6)
4m?, m2 mi
Using Eq.(A.4) and the connection between my, and Gp
L pem s o1
I'H W) = —
(Hww) = Py
_ 1 (mh - 472?1%)1/2 2Gr 4 (1 - 4_2 + 12@
8 2my \/§ my H
Grm3 4mW

2 mk
= 1— 1— 4— + 12—+ 4.7
8TV2 ( H mH) (47)

Similarly

G 3 4 2 2 4
D(H — 27) = L0 1y - 202 (42 4 192 (4.8)
16mv/2 my my My

Even if the mass of the Higgs is insufficient for it to decay to two Z bosons,
this channel remains important with the modification that one Z becomes
virtual.

The off shell decay was treated both in [10] and in my GIF 1990 summer
school lectures [1], with somewhat different results. I follow here the GIF
1990 treatment.

Imagine the decay H — Z*Z* — ff, f’f’. We display explicitly the

20



polarizations of the Z*s writing
Mo 9mz el . jlel . 2xe2 . 42 (49)
— cos by (g7 —m2 +im,T) (g5 — m2 + im,I) '

Here the js are the currents attaching to the Zs, i.e. things like wy,(gv +

gays)v.
The virtue of this representation is that it isolates the decays of the virtual

Zs. The partial width of the off-shell Z is given by

4
ar = &7
sz*

e j?d® (4.10)

where d® is the usual two-body phase space

(2m)~°
d® = ——pendQem 4.11
IV (4.11)
The partial width is of course independent of the particular polarization.
The four-body phase space can be written
ddy = d®y(P; q1, gz)dm? (2m)3d®Ldm3 (2m)? d D3 (4.12)

Now we take three explicit polarizations, two linear polarizations trans-
verse to the directions of the Zs in the H rest frame, and one longitudinal
polarization.

g = (0,1,0,0) = €5
¢ = (0,0,1,0) = ¢
e = (87,0,0,7); &= (57,0,0,—7) (4.13)

If we now sum over the polarizations, the square of the amplitude inte-

grated over phase space, is

1 gmz \?
b= %(cos&w> (27) 0 d®y(P; q1, go)dmidm;

e G PRy is (L + Bi ) + 2| - 57
|m% — m?2 +im,T|?Im3 — m2 + im,[|?
1 gmy
m (cos O
 (2my) 2) T (my) (2me) (2m)T(ma) 331+ BiBu)* + 2
|m? — m?2 +im,L|?|m3 — m2 + im,['|?

2
) (27r)10d<1>2(P; q1, q2)dm§dm§

(4.14)
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In fact, the partial width of the Z scales with m. Moreover, it is really
m*T'(mx) = m % (['/my) that we should use. Writing ¢ = I'/m, we have

1 gmz \?
b= %<6050W> (27)2d®y (P; qu, g2)dmidms

(2m?) (2m3) e[y (1 + B152)* + 2]
|m2 —m?2 + im3e|?|m3 — m2 + im3e|?

(4.15)
The momenta-squared of the Zs in the H rest frame is
mj — 2m%(m? + m3) + (m? — m3)?
pzm — h H( 1 4 22) ( 1 2) (416)
my
while the energy of the Z* with mass m is
2 2 _ 02
By = M T s (4.17)

2mH

and similarly for the other Z*. Thus defining the dimensionless variables

v =mi/myy = my/my;w = my/my (4.18)
we have
o wtr—-y  w—zT+Yy
7= 2wt Y2 = 9 ,—wy
2.2 w? = 2w(z +y) — (x —y)°
171 = o
2.2 w? = 2w(z +y) — (z —y)°
272 = dwy
(4.19)

Substituting these values in, and doing the trivial integration over df2

=y (i) O
/\/w2 —2w(x Zi) + (z — y)2mz(2x)(2y)d:rdy
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Xg{[w?—(x—y)? W= 2w +y) + (@
dw,/xy dw./ry

ly — 1+ iy6|_2

1 8m?%m3Gr 1 / ded \/w2—2w(x+y)+(x—y)2
= — x
8m32, /2 cos? Oy, 4m3 v 4w

62

4xy

X .
16w?zy

{[2w2 —2w(x + y)]* + 32w2xy} |z — 1+ ize| |y — 1 + iye| >

2
y) )? +2} |z — 1+ ize| 2

2 —y)?,, 2 2+1 2
_ Gpm € /d“Wl‘ @+y) | @=—yPy 20a+y) o +10my+y
w

w? w w?

8V2

X|w — 1+ ize| %y — 1+ iye| ™2

Now, in fact, we have forgotten the factor of 1/2 for the identical par-
ticles in the final state. This needs to be there even if the particles can be
distinguished by their unequal masses. For example, take (1) to mean the
lighter of the two Z*s. Then the integration over the full (four-body) phase
space needs a factor of 1/2 to make sure we impose this condition.

Thus we have

_ 2
D(H — 2°2") = (ig"\;ﬁe /d dy\/l— )+(xw2y)

x[1 —

20r +y) a? +10xy—|—y
+ 5 ]
w w
x|v —1+ive|?jy — 1 +iye|™>  (4.21)

where the integration region is 0 < /= + /y < y/w.
As a check, suppose we are above threshold and treat the Zs as narrow.
Then the final factors become

5@~ 1) =y - 1) (4.22)

leaving us

Grm3 4 4 12
1672 w w o w?
In agreement with the ordinary result.

A plausible approximation below threshold is to assume one of the Zs is

on-shell. This is achieved by converting one propagator to a delta function

T(H — Z7) = (4.23)
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and multiplying by two, since either Z could be on shell, with the result

. Grm3; ¢ 20x+1) (z—1)2
[H = 22) = 8F\/§H7r2/\/ ( w2)

1) 10 1
N s +x T g — 1+ dwe|2da
w w
(4.24)
If we use as a variable
2B,  m3 +m} — xm? 1
p= oz My ¥My Z WMy g, - 2 (4.25)
my m2 wow
we find
G 4
PH = 77) = GEmin € / 2o =
8v2 wr? w
8 122 12
2 -2
X[z to ﬁ]|(1—z)| dz
(4.26)

The variable z lies between z,;, = 14+1/w and 24, = 2/y/w, where 1 < w <
4 since we are below threshold. We have dropped the € in the propagator
because there is no reason to suppose our approximation of taking one Z on-
shell should be reliable when we are within a Z-width or two of the threshold.
Integrating over z gives the result of Keung and Marciano [11]:

. Grm3, €
I'(H— Z*Z) R F(1/w) (4.27)
where
B 3(1—88+203) 3s—1
o = 5= < 2537 >
47 13 1\ 3 ,
—(1-y9) (53 -5t ;) — 5(1 —6s+4s°)Ins (4.28)

Keung and Marciano suggest that this approach be extended by restoring
the €2 piece of the denominator to obtain results nearer threshold. However,
this heuristic method cannot really be correct because if it is extended far
above threshold it will give an answer too big by a factor of two.
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Figure 2: The partial width for H — Z*Z* in units of Gpm3/(2v/27) as a
function of mpy in GeV. The solid curve is the result of the full double inte-
gral representation. The dashed curve is the Keung-Marciano approximation
below threshold. The dot-dash curve is the result given by the program HDE-
CAY, [14]. The dotted curve, barely distinguishable, shows the naive result
above threshold.

25



|

f

Figure 3: The decay to fermions favors high fermion mass.

4.2 Decays into Fermion Antifermion Pairs

The coupling of the Higgs boson to fermion antifermion pairs is

9f 7
2 H 4.29
Ll (4.29)
while 5
gyv grmw
mr=—"— = — 4.30
Y RN (4.30)
so the coupling is equivalently
gmy
-2 < H 4.31
LTS (4.31)
According to Appendix B
. gmy .,
— = — 4.32
iM Z2qu(p )u(p) (4.32)

The square, summed over final state spins is

ME = T (f 4 (= my)
N 4m3, f f
2.2 2 9
gm g'm
= oA - my) = iy —Am). (4.33)
w w

Using the formulae from Appendix A,
L pem

r = 240)
d 3272 M2|M| d
1 QZm% L 213
1—‘ = . P _ 4 /2.
8tm?%  2m3, Q(mH mg)
/2
_ Gpmimy 4m3 K
I'H — = — 1—-—+* C 4.34
1= ) = EMI (1T (1.31)
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where the color factor C is 1 for leptons and 3 for quarks.
For decays to b and ¢ quarks we have

m 4m? 3/2
['(H —bb) = 4.0MeV <7H> (1 - —”)

100 GeV m2,
3/2
_ my 4m?
I'NH —tt) = 24 — |1l - —
(H = 1) GeV (400 Gev> ( mg)

(4.35)

The dominant decay mode of the Higgs boson is to bb from the bb threshold
until WW* surpasses it around my = 150 GeV. Once the ZZ channel enters,
it has about half the strength of WWW. Above its threshold, ¢ is competitive
only for 400 < mpy < 600 GeV, and even there its branching ratio is never
more than about half that to ZZ.

4.3 Decays at One Loop to gg, vy, and vZ

Other Higgs boson decay occur only through one-loop processes. Consider
for example H — ~~. There is certainly no direct coupling of this sort. The
required form for a (electromagnetically) gauge-invariant coupling is

L o HE,, F" (4.36)

where here F' is the electromagnetic field strength. However, this has dimen-
sion [M]°, since each bosonic field has dimension [M] and each derivative
also has dimension [M]. A renormalizable interaction must have dimension
[M]* or less. Thus, there cannot be such a term in the basic Lagrangian of a
renormalizable theory. It follows that this term, if induced at one loop, must
be finite.

The Lorentz structure of the amplitude must be

M == A(el,uklr/ - €1yk1u)(€2uk2y - €2V]€2’u) (437)

If we take the polarization vectors to be purely spacelike, so €] - El =0,
gg : kg = 0 then
M - —2Ag1 : ggkl . kg
S IMP = 20APmy (4.38)

pol
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Figure 4: The decay H — 7 receives contributions from fermion loops and
W loops.

In calculating the partial decay width we must remember to divide by
two because of the identical particles in the final state.

1

~ 167
The amplitude A receives contributions from W loops and from fermion

loops. Both contributions can be written terms of a complex function

1 =y 1 — 4yt
1) =3[ dy [ dt—1 4.4
(z) =3 o Yy 1—yt/z (4.40)

First note that if 2 — oo, then I(z) — 1. Now more generally, we find

r APPmd, (4.39)

I(z) = 3224 (1—42)f(2)]
f(z) = 2z (sin_1 2—\1/E> ;2> 1/4
= —2z (— cosh™! 21? + %) ;2 <1/4 (4.41)

The details can be found in [1].
The contribution of the W loop is

Aw (4.42)

4N —1

- 1672myy

ge? l2(2A — 1)I(\) + 10X — 1]

where A\ = m?,/m?%.
The contribution from each fermion loop is
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2 2 2
Ap=—2-9C 2002 4.43
P T QO () (1.3
where () is the charge of fermion f and Cy is one for charged leptons and 3
for quarks.

We can write the full result then as

Q GFmH wy "

(H = 7) = S ——focff ) (4.44)

where

42X = 1)I1)(A\) + 201 — 2
4\ —1

In the limit of myg << my, “7" — 7.

While the branching ratio to vy is always small, this decay has a distinc-
tive signature. For a Higgs boson too light to decay to ZZ* or WW™, this
channel may be the detection channel of choice.

The decay to two gluons is analogous, except that of course there is no
W loop. The translation from the amplitude for the decay to two photons
to the decay to gluons with labels 7 and 7, 7,7 =1,...8 is

“711 —

(4.45)

DY
e’ — ¢gIr—=—
2 2
1 i Lo s
et = (59:07)(59:97) = 24; (4.46)

SO

T(H — gg) = O;Giiyflz ( Z)
= kv <%>2(100 GeV) |§q: ( 23) S (447)

This result is enhanced by QCD radiative corrections[12, 13]

4.4 Higgs Width and Branching Ratios

The total width of the Higgs boson as a function of its mass and the branch-
ing ratios for the various channels are shown in Fig. 5. Here higher order
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corrections, not described in the preceding sections have been included. The
salient points are these: The bb channel dominates at low masses and it sup-
planted by WW* near 140 GeV. The WW and ZZ channels dominate above
this, challenged only by ¢ between 400 and 500 GeV.

5 Higgs Boson Production

5.1 In Lepton Colliders
5.1.1 Resonant Production in ete , u™p~ Collisions

The cross section for resonant production ab — R is always given by the
Breit-Wigner formula:

27 +1 dr I2/4
(28, +1)(2S, + 1) k2 (E — M)? + 12/4

= BR(R — ab) (5.1)
where k is the incident c.m. momentum. At the peak, the factor containing
the energy dependence is unity. Consider resonant production of the Higgs
boson in eTe™ collisions. The partial width is, from Sec.4.2

T(H — ete ) = 1.7 1011( i )GV 5.2
(H = eter) % 100Gev) ~° (5:2)
Altogether, then, at the peak the cross section is
100 GeV\?
olete” - H) = 4.9x 10" fb <7e>
mmg
1
1.7 10“( M ) GeV x —
S 100Gev) ¢V T,
100 GeV 1GeV
= 83x 107 fb( ¢ ) x =20 (5.3)
mg FH

Even below 150 GeV, where the width of the Higgs boson is just a few MeV,
this is quite hopeless since the ete™ cross section is several units of R where

one unit of R = 5 = SGeV) = 8.7pb

ira® 87 b ((100GeV)2> (5.4)

However, the situation is much improved if the colliding particles are
muons rather than electrons. Naturally this increases the cross secton by
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Figure 5: Partial widths and branching ratios for the various decay modes of
the Higgs boson, calculated using HDECAY [14].
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Figure 6: The process ete™ — HZ was the basis for the search at LEP-II.

(my/me)?* = 4.3 x 10*. Taking the Higgs width to be just that from the
decay to bb, we have

(5.5)

mpmg

2
o(utpn — Higgs) =9 pb (LOOGGV))

We see that this makes the signal comparable to the background. A more
serious study must include background production from Z* decays and from
Zs resonantly produced after initial state radiation. It also must include
consideration of the beam energy spread, which will reduce the peak cross
section.

5.1.2 Associated Production of H with Z in ete™

There has been a continuing effort to find the Higgs boson through the pro-
cesses ete” — HZ* and ee” — HZ. The former was proposed by IToffe and
Khoze [15] and calculated in detail by Bjorken [16] The latter was evaluated
by Ellis, Gaillard, and Nanopoulos [17].

Let’s calculate the cross section through the virtual Z since it is this that
seems relevant now that lower mass Higgs bosons have been excluded. We
use the Breit-Wigner formula described in Appendix C

316m  sI? T(Z* —ete) (2" — ZH)

olete” - ZH) = 175 Goml) T T
NV te \INZ* - ZH
P N _we)?( — ZH) (5.6)
(s —m3%)?

Here I' stands for the width of the Z*, i.e. the width the Z would have if its
mass were y/s. To evaluate I'(Z* — eTe™) we consider the generic coupling
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of a Z to a fermion-antifermion pair:

M(Z* = ete”) = e, (gv + gays)v
1
2

MG = g[—guu] (Tr py*(gv + gavs)47” (gv + gavs))

1
= 5T P vu(gy + 93)

8
= —p-q(gy +9%)

3
4m?
= (o +92) (5.7)
Note that we dropped the second part of the polarization sum
Z GHG; = _(g/u/ - kuku/MQ) (58)

pol

because we assumed the outgoing fermions were light. For light fermions,
both the vector and axial vector currents are conserved.

The magic formula for the neutral current in the Standard Model, the
expression that gives the couplings is

g . g 1 ‘
cos Oy (T — Qsin® b) — cos Oy (T37u§(1 —75) — Qusin®Oy)  (5.9)
so that
g 1 9
v cos Oy (2 31— @sin” Oy)
g 1

= - 5T 5.10
g4 cos By 2 8L ( )

The formula of Appendix A give, treating the final fermions as massless

- m
N(Z—ff) = é(g%rgi)
_ mz g 2 1. . 2 Lo
127 (cos@w> [(2T3L @sin” Oy ) +4T3L]
GF’ITL%

= Sir5l (2T —AQsin® fy)* + 4T3
amy 1 -
= I8 5l oo o (2Ton — 4Qsin’ by)? + 4T3
(5.11)
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We describe the decay Z* — ZH with momenta px, p, and ¢ for the Z*,
7, and H respectively. The momenta of the decay products in the Z* rest
frame is pep,. From Eq. 4.3 the ZZH coupling is

gvHZ,Z" _gmgHZ,Z"

= 0.12
4 cos? Oy 2 cos Oy ( )
giving a vertex factor
.gMmzguv
I 5.13
! cos Oy ( )

The amplitude squared, averaged over initial polarizations (treating the Z*
as on-shell)

1 gmz 2 * % * v v

Mlawe = 3 (cosew> (9w — pfp /) (9 — p"p"/m?)
_ l( gmz )2 PR A )

3 \cos By m2m*2

L/ gmg )2 2
= = 43 5.14
3 (cos@w [m2 +3] ( )

The partial width then for Z* — ZH is

1L [ gmg )2 P Pem
Nzt —7ZH) = — 43
( ) 247 (cos Ow [m2 + ]m*2

2 2
QPcem Pem m
= 3 0.15

6 sin? Ay cos? By [m*2 + m*2] ( )

Combining the partial widths, we compute the cross section for ete™ —
ZH at center of mass energy squared m*? = s:

127 am?. 1

J(e+6_ - ZH) - (8 — m2 )2 48 sin2 Ov cos2 O [(2T3L - 4@ sin? 01/[/)2 —+ 4T32L]
Z
QAPem pgm 3 'm,2
6 sin? Oy cos? Oy | m*2 2
o 2Wemr/5
— cm 1 . 4 .. 92 0 2 1
192 sin* By cos? Oy (5 — m%)? [( sin® Oy )” + 1]
2 2
x[alem 1T (5.16)
S S

34



0.8 T T T T T T T T T T T T | T T T T
i ee —> HZ ]
0.6 —
- my=90 GeV T
~ i ]
,_Q r- e = = = = — 3
Q, 0.4 1
N
= L B
02— - —
i 120 .- T
L % 4
L , 4
0.0_ 1 1 L 1 | II 1 1 1 | 'I 1 1 1 | :II 1 1 1 |
180 190 200 210 220

Ecm (GeV)

Figure 7: Cross section for ete™ — H Z for various values of the Higgs mass.
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Figure 8: The W fusion process (which can also proceed through a pair of
Zs) becomes most effective at very high energy.

5.1.3 WW and ZZ fusion in ete™

Although originally proposed as a mechanism for Higgs boson production at
high energy hadron colliders [18], the W and ZZ fusion process is relevant
to high energy linear electron-positron colliders, as well.

These processes are analogous to the two-photon mechanism. We can
think of the gauge bosons here as being bremsstrahlung products. There are,
however, important differences. While the virtual photons from electrons
are produced near the forward direction, the Ws and Zs have transverse
momenta of order my,. Moreover, it is the longitudinal W's and Zs that turn
out to be the most important.

Consider, in particular, ete™ — UrvH and let the initial electron momen-
tum be p;, the initial positron momentum be py, the ¥ momentum p/, the 7
momentum ph,. The matrix element is

v_

ig TP 51— 15)u(pr) 1y TE 31— )ulrn)

—iM = (igmw)guuﬁ (@ — m2,) V2 (a3 —miy)

(5.17)
where ¢; = p; — pj, Q2 = p2 — p. Squaring and averaging over initial spins

1 1
tad (qf — miy)? (g3 — miy)?

Using Egs. (B.26, B.27),

(5.18)
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11 16p} - ph p1 - p2

M| = ¢*m?, == 5.19
ME = 0 G g (= (= iy (519)
If we write the four-momenta explicitly,
p1 = E(1,0,0,1); ps = B(1,0,0,—1) (5.20)
Py = (VoI E2 4 pi P, a1 E); py = (Va3 E? + ply, Ple, —12F)
(5.21)
we find
Q% = —2;m 'pll ~ _1%1 Q% = —2p; 'Pf‘z ~ _1%2 (5_22)
2py - Py = T1035; 2p1 - p2 = s

The four-momentum of the Higgs boson, k, comes from combining the
momenta of the virtual Ws: ¢; + ¢ = k, so

2
my = (o +@) = <2E — VIIE? + phy — a3 E? +p2u>
—(#1E = 23E)* — (P11 + P12)’
P, Pl
~ 4B (1 —2)(1 — x3) — (2 — 21 — ) (f + f) — (PL1+P12)’
1 2

(5.23)

We do the phase space calculation explicitly, noting that the flux factor,
Eq.(A.11), here is just s/2:

2m)t &py  &py, &Ik

d
’ 25 (2m)32p, (2m)32p, (27)2Ey
52.'17 X
X0 (D) + Py k= pr = p2)—
6,,,2
g m
X—s A (5.24)

(qf —miy)* (g5 — miy)
We get rid of the Higgs momentum in the usual way by writing

P ik,
= — 2
omE, ~ @ F M) (5:25)
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and then integrating d*k to remove the 6*. This leaves us
g*m?, dPp) d*ply s?x 1,
(mp2s () 2y 4

(g1 + g2)* — miy)

X P N\ (7 o\
PLy P,

This is still not manageable, but if we ignore the pieces containing p, in the
expression for (¢, + ¢2)?, we have simply

do =

(5.26)

1 a 3
do = 1672 (sin2 0W> sm%,
d$1d$2d2pud2pu
) i 2\ (2. 5 )
(5 i) (52 )
x0(s(1 —21)(1 — m3) — M3) (5.27)

We can do the transverse momentum integrals directly and then the in-
tegrals over the fractions of the incident energy x1, x5, given to the Wis:

do =

2
W

(sm 9W>3m124, dxs(lx—:r) (1_ (lm—%lx)>
= 1671%W (Sm 9W>3 Kl + %) mmi% —9 <1 - %)] (5.28)

Note that although a heavy particle with mass my is being produced, the
cross section is not suppressed by a factor 1/m?%. The cross section is “anoma-
lously large.”

The cross section can be reduced, without approximation to a double
integral[19]. The result is

do — o [(4mZ\  2(1 + cosf)
T 2 ) -

3
) T (s(1 — ) (1= ) — M)
myy
mi; /s

2m2 2m2
Tw oy “w
(1—-n)s (1—-0)s

J(1+ cos 0)dnd¢

(5.29)
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where 1 is the fraction of the electron’s energy given to the W—, ( is the
fraction of the positron’s energy given to the W, and

(n—my/s
(1—n)(1-¢)

is the negative of the cosine of the angle between the outgoing neutrinos.
The kinematic boundary is given by

cosf=1—2 (5.30)

(n>my/s;  C+n<1l+miy/s (5.31)

The function J is somewhat messy:

3 1
J(z,y,cos0) = 47r{p (ﬁ

canh-! VA xy — cosf >

zy —cosf (a2 —1)(y2— 1)
(x —ycos)(y — xcosb)
cos . VA 2?2 +y? — 3xycosf + 1
tanh +
A3/2 Ty — cos 0 A(zz —1)(y2—1)
(5.32)

_|_

The ratio of the standard approximation, Eq. (5.28), to the exact answer
is shown in Fig. 9). Not surprisingly, the approximation gives too large an
answer, especially at low energies. There is the suggestion that there are
corrections of order mi, /m3.

5.2 Production at Hadron Colliders

At the Tevatron Collider and LHC each single particle provides a spectrum of
quarks, antiquarks, and gluons. The effective cross section is thus convolution
of parton distributions with parton-level cross sections:

do = /d.’lfld.’lfgfl(.’lfl)fg(.’lfg)da' (533)

The canonical exposition of this paradigm was given for the ill-starred SSC
by Eichten, et al. (EHLQ) [20].

Suppose that at the parton level the process is reonant production, e.g.
qq — W. In the narrow width approximation, the Breit Wigner formula
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Figure 9: Ratio of the approximation, Eq. (5.28), to the exact cross section,
Eq. (5.29), for ete™ — vvH. The solid curve is for mg = 100 GeV, the
dashed for my = 300 GeV, and the dashdot for my = 700 GeV.

simplifies:
2J +1 A7 F2/4
L dn 5 )
O = BS E1ES, TR (B rreal R ab)
2J+1 472
— 5. T 125, +1) md (s —m’BR(R — ab)

— (2J + 1)%2F(R — ab)d§ (5 —m?) (5.34)

In the last line we relied on there being two polarization states for each
incident parton, whether fermionic or gluonic.
The cross section for producing the resonance is thus

2 T 2 acl
o= %r(}z s ab)r [ f (@) folr /) = %P(R > ab)r
(5.35)

where 7 = m?/s.
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5.2.1 Gluon Fusion

If the indications from the masses of the W, Z, and t are correct, the Higgs
boson is likely to be found at a relatively small mass, not far above the limit
near 115 GeV set at LEP II. The dominant mechanism for its production
would then be gluon fusion. The cross section, at lowest order is simply

11 42 . 9

o= (8 '3 -2) mHP(H — g9)d(§ — my) (5.36)
where § is the gg invariant mass squared. The factors (1/8)?2 arise because
only 1/8 of the time do colliding gluons have the right colors to annihilate
and because the width summed over all 8 gluons. On the other hand, the
decay rate included a factor of 1/2 for identical outgoing particles, which
needs to be removed. This gives us

o dL

S

7= 576mv? TE

(5.37)

where we approximated

m2
1> 1 (—5) ?—1 (5.38)
q M
assuming that m;/my >> 1 and dropping the small contributions from the
lighter quarks.

The QCD radiative corrections to this have been the subject of extensive
work [26, 29, 13]. At the next level in QCD we need to consider new physical
processes, qg — Hq, gg — H g, as well as virtual corrections to gg — H. See
Fig. 10.

In addition to the new processes, there are radiative corrections to the
underlying gg — H. See Fig.11

Since the dominant contribution is from the ¢ quark loop, one approach
is to ignore the other quarks and then treat the ¢ as heavy compared to the
Higgs. Then the t quark disappears leaving behind an effective interaction
between the Higgs and the gluons:

1 H
Blas) G, G = (5.39)

Lifog = ——n80
1997 41 4 () v

where (3 is the [ function describing the evolution of the strong coupling con-
stant, but only that part due to the ¢ quark, and where -, is the anomalous
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g g H g H
g q q g )
Figure 10: Three contributions to Higgs producction: Lowest order gg — H,
q9 — qH, and gg — Hg/

9 9 9
9 9 9
Figure 11: Some virtual radiative corrections to gg — H.
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dimension of top quark from renormalizing the Yukawa coupling. Explicitly

o 19a,
= — (1
b 3 < + 47 )

200,
= 5.40
Y. - ( )

This approach provides a clever and effective way to a reliable answer[28, 29].
However, the full calculation has been done.

In either the full calculation or in the shortcut, it is necessary to handle
carefully infinities that arise both in the virtual and real contributions. The
infinities in qg — ¢H arise from emission of the virtual gluon by the incoming
quark. This is a universal phenomenon and is treated by “factorization,”
that is, absorbing this effect back into the structure functions. Some of
the infinities in gg — ¢gH are of this same form. In addition, there are
cancellations between the virtual processes in gg — H and the real process
gg — H.

When all is said and done, the resulting change,

P o(pp — HX)

o(pp — H) (5.41)

is between two and three at LHC. In large part, this arises simply from a
rescaling of the lowest order result by the factor

Qg 11
Krescaling = 1+ # (71-2 + ?)

= 1+ 4.89a,(p) (5.42)
The dependence on the scale p at which oy is evaluated is an artifact. A
truely complete calculation will turn out not to depend on pu.

5.2.2 W and Z content of fermions

We can turn the tables on the calculation of WW fusion by thinking of the
W' as partons in an electron. Return to Eq. (5.27)

1 < a )3 ) dxidzod®p 1 d?p 1o
2 \ a2 W z ., 2
A7?
= WF(R — ab)fa(l — a:l)fb(l — 372) (543)
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The appearance of 1 —x is due to our having used x to represent the fraction
of the electron’s energy retained by the final-state electron. Now use

Grmi; g* mi dra m3
'NH - W W) =—7 = = 5.44
( W) V2 8t 8m¥, 8t 8sin’fOymy, 87 (5.44)

to find the distribution of the W partons inside the electron:

g° dy d*p. g° dy
3, 2 2 7 2( - )_
1673 y [miy +p1/(1—y)P> 167

(5.45)

where y = 1 — x represents the fraction of the electron’s momentum given to
the W.

Of course we might just as well think of this as giving the W content
of a uw or d quark in a proton. We can generalize the production of Higgs
bosonsby WW fusion to imagine simply scattering longitudinal W's off each
other [21, 22]. If the mass of the Higgs boson is low enough, we simply recover
the results above. However, as the mass of the Higgs boson increases, it is
less and less appropriate to considerate it as a real particle. Since its width
grows at the cube of its mass, it becomes so wide it is hard to exact where
it is. Equivalently, an increasing mass means an increasing A, which in turn
means increasing interactions.

5.2.3 Strongly Interacting W and Z

Indeed, the sector of the Higgs boson and the longitudinal Ws and Z be-
comes strongly interacting if the Higgs boson is very heavy. Moreover, these
interactions are quite analogous to the interactions of pions. In fact, they
may be more “pion-like” than pions themselves.

To see this, return to the Lagrangian

L= (Dud)"(D'¢) — 1”66 — Mo'0)? (5.46)
where )
6 = 5 (61 + &5 + &5 + 1) (5:47)

Then if y? < 0, some expectation value is non-zero. We write

¢35 = o=(¢s)+H=(0)+H
v o= —p?/\ (5.48)
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We can rewrite the Lagrangian as

1 1
L = 5@7?8“7? + iﬁuHa"H + p*H?

I 2 2 5 2 242
v ( ) 4?2 ( )

1 1 2
= SO.FOMT + SO,HO"H ~ %H2

m

2 2
H 2 2 My

H(H - —
7 (H” + 7%)

> (H? + 7°)? (5.49)

It is natural to expect that we can use the scalars 7 as surrogates for
the longitudinal W and Z since these putative massless scalars were eaten
in the symmetry breaking. Moreover, it is correct: the equivalence theorem
[25] establishes this. As an example, let us calculate the decay rate for
h — W*w~, just using the identification of # with W+, w—, Z. We write 72 =
2wtw™ + zz (adhering to the convention that these scalar representations
of the longitudinal gauge bosons are indicated by lower case letters) and
determine the matrix element from the Lagrangian Eq.(5.49):

2

Now from the equations in Appendix A,
L p
r R 2
8&m M? |
1 my/2miy

Q

8T m2 w2
= ——F 5.51
in agreement with Eq.(4.7) in the limit my — oo which we are considering.
Buoyed by this success, let us calculate all the channels of W W scattering
using this same Lagrangian.
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First we calculate wrw™ — wtw™

X

L9.9 —

2
t—my

w™ w™
w w
. im%;
—iM =
+ + v
w w
w w
H< )
—iM = (-5
+ + Y
w
_ w-
- H
PN —iM = (-5
+ + Y
w w
For the sum, we find
2 2
m m
—iM = ——X (2+ T
v 5 —my

9.

2im

2

2
h



—— (5.52)

&

For wTw~™ — zz we have

w <
. iqu iqu
_ZM:_82'4'2:_ 2
+ z v v
w
w z
W
—tM =0
w+ VA
w z
H M= i (i g = imly
wt . T s—m¥y 2v T v3(s—m¥%)

Summing these we find

4M:—m%@+ m§f>:—im%f S5 (5.53)
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For 2z — 2z we have

48

zZ zZ
H L
—iM = i (<) 22
e e s—m?; 2u
y4 Z
- H
o2
e . t—m?; 2u
o2
7 . I3 _Z’ITLH
M = u—m?; ( 2v ) 2.2
y4 4
2
_4q — _tmy 4]
. . M= -3t -4
Here the sum is
4 : . 2
o omy i 1 i mi,
_ZM__UQ (s—m2 t — m? u—m2>_321)2 =
H " "



In summary

Mwtw™ - wtw™) = 2
s
Mwtwt - wtw®) = 2
Mwtw™ — z2) = —%
v
M(zz—=22) = 0 (5.55)

where the second amplitude is obtained from the first by crossing (s — u).
Unitarity is expressed [see Appendix B]

Q%M(plap%pllapé) = _(27r)4 Z d®, M (pllap,% f)*M(plap% f) (5'56)
f

and
(2m)~°

4y/s

If we consider just s waves and elastic scattering,

dd, = pdQ (5.57)

__ L2y
IM 167T\[| E (5.58)

We implicitly assumed a two-body final state with non-identical particles.
If we choose a new normalization,

___Pr
A= 87r\/§M (5.59)

then we have conveniently

= |A]? (5.60)

If the two-body state is made of identical particles, the phase space inte-
gration extends only over half of 47 and we have

SA = %|A|2 (5.61)

In the standard case we can satisfy unitarity with

A= e”sind (5.62)
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whereas for identical particles we need
A = 2¢e"sin § (5.63)

Consider a situation in which we have only two-body states, some chan-
nels with indentical particles and others with non-identical particles. Then
unitarity reads

* 1 *
Say; = Z g p i + 2 Z Qg Qi (5.64)

We can reduce this to a known problem with the substitution

ap; = by T#f i#i
api = V2by; f#f i=i
api = V2byp f=1f i#i

It is possible to select phases so that all the s-wave amplitudes are symmetric:
ag; = a;f. The b amplitudes satisfy

T
the solution to which is found by writing the matrix equations

S = I+ 2b
STS =1 (5.67)
In other words, take S unitary. Then

S—1
21

b= (5.68)
is a solution. If we diagonalize the S matrix, then its non-zero elements are
of the form e? where a = 1, ... runs over the eigenchannels.

In the case of s-wave scattering of ws and zs we have only the I = 0 and
I = 2 channels and we anticipate that all we need are d;—g and d;—5. In our
peculiar limit of s-wave relativistic scattering
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A=——ZM=—-——M (5.69)

we write our s-wave amplitudes as (with sy = 167v?=(1.7 TeV)?)

Awtw™ s wtw™) = —s/s
Aw w™ s wtw) = %s/so
AlwTw™ — 22) = s/sp

Az > zz) = 0

(5.70)

Reading the Clebsch-Gordan coefficients out of the Particle Data Book (and
changing the sign of zz since we wrote 72 = 2w w™ + 2z in violation of the
Condon and Shortley convention) we expect

AwTwt = wtw™) = ay
1 1
Aw w™ s wtw) = 5% + 300
1 1
Awtw™ — 22) = —(zaz — —ay)
3 3
2 1
Alzz = zz) = 302 + 300
(5.71)
all of which are satisfied by
as = —5/So; ag = 2s/sp (5.72)

The remaining question is what are the unitarity restrictions on a, and
ag. Of course our Born-level calculations cannot satisfy unitarity because the
amplitudes are purely real.

Explicitly, we have

1
SA(wTw™ —wrw™) = [[A(wTw = whw ) + §|A(w+uf — z22)]?
1 1 1 1 11 1
o[ - — - - 2 = - 2
\9[6a2+3a0] [|6a2—|—3a0| +2|3a2 3a0| ]



12 6
1
SA(wtw™ — 22) = [iM(zz — zz) A(wtw™ = 22)
+A(zz = wiw ) Alwtw™ = whw)]
11 12, 1., 1 1 1, 1.1 1
%[—(502 - 500)] = [5(3% + gao)(—gaz + 500) + (gaz - gao)(gaz + 500)]
1 1
= —6|a2|2 + 6|a0|2 (573)
and so on. Evidently the solution is simply
1, 1
Sa; = §|a'l| ; S(1/ar) = ) (5.74)
SO '
a; = 2€ sin o, (5.75)

This suggests an ad hoc procedure, the K-matrix technique, for unitariz-
ing a Born amplitude. The prescription is

r _ 1 .
(a/2) a (aBorn/2) ‘
o = p2aBomti (5.76)

4/a2BOT'TL + 1

We can apply this to each of our non-zero s-wave amplitudes to obtain
a¥, I =0,2. We then have the unitarized amplitudes

1 1
o (wrw™ = wtw™) = éafﬂ + gaﬁo
1 1
a(wrw™ — zz) = —gaf(:Q + gaﬁo

o (wrwt — wtwt) = af,

(5.77)

with

ABorn 1=2 = —5/ S0; ABorn 1=0 = 25/5¢ (5.78)
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In terms of these, the cross sections are

16m

clwtw™ = wtw™) = —|a"(wrw™ — whw™)]?
s
o= 8T ki 4. - 2
olww™ —z2z2) = —la" (ww — 22)|
s
8
oc(wtwt - wtwt) = —7r|a,K(w+wJr — wtw™)?
s

(5.79)

Note that unitarity is satured when a; = 2i for the elastic channels. For
the inelastic wtw™ — 2z, the maximum occurs when the amplitudes are at
opposite sides of the circle of elastic scattering, e.g. 0y = m,0, = 0. The
limiting amplitudes are thus

o (wtw™ = wtw™) = i
0
a(wrw™ = z2) = 52
o (wrwt — wtwt) = 2i
(5.80)
and the limiting cross sections are
16
owrw —wtw ) = =T
s
16m41
o(wtw™ — z22) = el
s 92
16 1
o(wrwt - wtwt) = 2T
s 2
(5.81)

The results are shown in Figs. 12-14, where we use as the unit of cross

section 16 16
T T

= = — 6.8 nb 5.82

T T (L7 Tev)? " (582)
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Figure 12: W*W* — WTW™ scattering in Born approximation and with
K-matrix unitarization.
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Figure 13: WTW~ — WTW ™ scattering in Born approximation and with
K-matrix unitarization.
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Figure 14: WHtW~ — ZZ scattering in Born approximation and with K-
matrix unitarization.
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6 Bounds on the Higgs Mass from Theoreti-
cal Considerations

In the Standard Model it seems that the Higgs mass could be anything. We
know only that
my = 2\ v (6.1)

and since we don’t know A, my is unspecified. Of course if ) is too large,
our theory will not be perturbative.

In fact, we can say something more than this. The reason is that A
specifies a fixed coupling. We know, however, that it is often more insightful
to think of couplings as being dependent on the mass scale or distance scale
at which they are measured. This is even the case in electrodynamics. We
know that the long-distance value of the electromagnetic coupling, the fine
structure constant, is about o = 1/137. However, if we get close to a heavy
nucleus we find that strength of the electric field is not really za/r?, be
something larger, as a result of the vacuum polarization. As we penetrate
the cloud of virtual positrons surrounding the nucleus, we see more and more
charge, so the field increases faster than 1/72. The opposite effect is seen in
asymptotic freedom, where at short distances interactions become weaker,
rather than stronger.

In scalar field theories, like those describing just the Higgs sector, the be-
havior is like that in electrodynamics: at short distances interactions become
stronger.

Let us see how this happens. Begin with our very first Lagrangian.

L = 0,00%¢ — %u2¢2 — %Aqs‘* (6.2)

The amplitude for two-to-two scattering is just (remember: i times the
Lagrangian)
—iMpy = =121\ (6.3)

The factor twelve arises from 1/2 times the 4! ways we have of picking the ¢
fields to attach to the four lines in the diagram.

Now lets go to the next order. To do this, we need to specify in the
incoming and outgoing momenta. Actually, it must be enough to specify the
Lorentz invariant quantities, s,t, u, where

s = (¢ +p2)2 = (p2 — p;)Z;
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/ / /
P1 j4 b1 P p1 P
Figure 15: Second order scattering in ¢*.

(p1 = P1)? = (p2 — Ph)%;
uw = (p1—ph)* = (p2— 1))’ (6.4)

For a real scattering event, these always statisfy
s+t+u=4m’ (6.5)

but we can consider off-shell scattering if we wish. Since we are ultimately
interested in high-energy scattering, we take s = t = u = Q% < 0. By
working at spacelike momenta we’ll stay away from confusing things like real
particle production. Now consider a diagram in which p; and p first interact
to produce a new pair, which subsequently interacts to produce py and pl.
The amplitude is

d*k i i

—iMyo = (—iN/2)? - (24)? 3] e EG Q= (6.6)

Here we forget about spontaneous break down and use the apparent scalar
mass . The four-momentum @ is just @) = p; +p}. The factor of 1/2 comes
from the loop and makes sure we don’t count it twice. We use the Feynman
trick

AB / a:A+ 1—3:)B) (6.7)

to write

k1 1 ! d'k 1
/ @m)T ke =2 (k= QP —p? /0 dx/ @m)* (1 = 2)(k? — ) + z((k — Q) — p*)]?
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1 d*k 1
= | Gy a

1 d*k 1
B /0 dx/ 2m)* [(k — 2Q)* — 22Q* + xQ* — pi?)]?

Since at large momenta we have d'k/k?, the integral diverges at large
values of k. If we had fewer than four dimensions, say n dimensions, we
would have d"k/k* and the integral would converge. This is the trick of
dimensional regularization. The rules of thumb are given in Appendix D

Using the equations there,

—iM o = (—iN/2)? - (24) - g; /01 daT () (p? + 22Q* — 2Q*)™°  (6.9)

1

where
n

e=2— 5 (6.10)
The € exponent is handled by the expansion A¢ =e“ =1+ €A +....
Now we have calculated only one of three diagrams possible. The vertex
with the incoming momentum p; might have p} or p), incoming, too, in place
of po. These amplitudes would be indicated M,y and M, 5. Altogether we
get a factor of three:

27\2
MO + M2 — 12)\ - 2

/01 dz[T(e) — In(? + 22Q% — 2Q%)]  (6.11)

The way that renormalization is carried out here is that we now say
“Oh, T meant that the amplitude should be —12i\, when Q% = —pu? not this
divergent and complicated mess. I'll add a piece 6\ to fix this up.” The
amplitude thus becomes

2

272 1
Mo+ My = 12) + 126\ — 7;2 [ el () ~ (e + Q" — 2Q?)] (6.12)
0
where
27)\2 : 2 2 2 2
1200 - 25 / dr[D(e) — In(u? — 2242 + wp?)] = 0 (6.13)
e 0

which is to say

Mo+ My = 12X+

27)2 /1 o 1A QR — 2 Q?
0

71'2 /L2_372/L2+$lﬁ2
27N Q?
~ 122+ 555 (6.14)
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This is, in fact, the beginning of a geometric series:

I\ . Q2
B 12
1-— %ln%
= 12) (6.15)

We see that the effective coupling, Ag grows with () and eventually blows
up. This is the so-called Landau pole. Taken literally, this would tell us that
we can’t really work at scales beyond

Avandan = pe'™ /Y (6.16)

Of course, we can’t take this completely literally because we have used
perturbation theory and this would fail before the coupling became infinite.
Still the result is suggestive. To make this semi-quantitative, let’s take p? =

1
m2 = 2 \v?. Let’s also assume that my < §ALandau since we wouldn’t really

know what we were talking about if my > Ap.ngau. Then

2 x 4m?v?
2 =2 0 < T 6.17
M T2 T (6.17)
which gives
mpg < 875 GeV (6.18)

A better treatment uses not a single scalar, but four scalars, as we noted in
the presentation of the Standard Model. We then find

4Am?y?
2 =2\ < 6.19
" Y 3ln2 ( )
which gives
mpg < 1.07 TeV. (6.20)

An alternative approach is to insist that the simple model remain ade-
quate up to some scale A. In the four-scalar model, this tells us that

4Am?y?

2 =92\ 2
i v 3InA/v

(6.21)
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where we make the assumption that v is the appropriate scale. In the extreme
we might take A ~ 106 GeV so my < 160 GeV.

Rather than sum the geometric series, we can analyze the behavior of A\g
with a differential equation - the renormalization group equation. Directly
we see that

L _1_1_9,¢@
so that
1 ANQ) 9

MNQ)20mQ 42 (6.23)

The renormalization group equations for the couplings can be determined
systematically [24]. With the conventional normalization

A o= M
202
my
= —— 6.24
gt v ( )

the equation for \ reads, with ¢t = In Q?, [26]

dr
dt 1672

12)* + 12)\g7 — 129/ — g)\(392 +9%) + %(294 + (g% + g'2)2)}
(6.25)
We see that the purely self coupling drives A to grow with increasing ¢ if
A is large. However, if A is small, it is the Yukawa coupling to the ¢ quark
that dominates and this drives A down. The theory won’t make sense if A
goes negative because then the potential energy is not bounded below. So
we can go beyond the scale A where A(A) = 0. Now dropping all but the
Yukawa driving term,

AMA) = A(v) In(A?/v?) (6.26)

4
e

so this sets a limit

3v?
2 4 27,2\ o,
My > 5 5% In(A/v*) ~ 68 GeV,/In(A/v) (6.27)
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7 Radiative Corrections from the Higgs Bo-
son

It is a fundamental consequence of quantum mechanics that there are physical
effects from particles that are not physical produced, but exist only virtually.
It is in this way that we can hope to see the Higgs boson before any accelerator
actually produces it. An especially sensitive test is provided by the relation
between the masses of the Z, W, t, and Higgs.

We have already seen that in lowest order the masses of the Z and W
and the Fermi constant are given by

2

. 92U
W 4
2 2y, .2
s (g7 + g%
m;, = 1
Gr = — (7.1)
and ) . )
g == E + ﬁ (72)

To fix the parameters of the Standard Model we need three quantities.
While in the Lagrangian it is g, ¢’, and v that seem fundamental, we can
use in their place any three physical quantities determined by them. The
traditional choice is aem, G, and mz. These are extremely well measured.
Unfortunately, it is not .., (Q = 0) that really shows up in the calculations,
but e, (Q = myz).

The W mass is an especially interesting case. In the Standard Model
there is a special relation connecting the W and Z masses and the mixing
angle that described the gauge interactions:

my = cos Bymy (7.3)

At lowest order, the W and Z masses are set by the vacuum expectation
value of the Higgs boson. We might have had other scalar multiplets besides
the one we chose. In general, the gauge boson masses come from

(Du(6)"Diu(9) (7.4)
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If we have several multiplets we can write
Do) > X | (W T+ T - T8 () (1)
¢
where we used (¢) = (T3 + Y/2)(¢) = 0 Now we can rewrite masses as

(DN D) = S { ST 4 1) = T2 W 4 T 4 )22 (0

¢
(7.6)
The ratio of the squares of the masses is thus
1
o2t 2
mhy g oll(T+1) = I5]5(0) )
my g%+ g” T3 ()

If all the Higgs multiplets with vacuum expectation values have T' = 1/2, the
second factor is unity and the relation my, = cos fyymz holds.

Provided there is just the one Higgs doublet breaking electroweak sym-
metry, this relation has small, calculable corrections. At Born (tree) level we

have
1 Aoy
—1+,|1—-—— 2 7.8

With radiative corrections this becomes

1 dro(l + Ar)
2 _ 1 _ 2
my =5 (1 + \l 1 V2CmE ) my (7.9)

My

The sensitivity of m%, to Ar is most easily seen by writing

1
my = 5<1—|—\/1—sin220W(1+Ar)>777,22

1 om3 in” ¢

-t W~ 0.36

myy, OAr 1 —2sin® 0,

1 8mW

— ~ —0.18 7.10
mw OAr ( )

so that a shift of Ar by 0.01 changes my by 145 MeV.
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Figure 16: Higgs boson contributions to the W mass.

Here Ar contains all kinds of loops inserted into the propagators of the
photon, A, and W. Explicitly [27, 1]

Ar = B ApS 4 L (15 () ~ 26 Ty )+ L (52— )T () (7.11)
where

s = sinfy

¢ = cosby (7.12)
and where

Ao = e[llgg(my) —Tgg(0)]
Ap = %[HH(O)—H%(O)]

oll(q?)

() = [ - 10}/ ~ =55

(7.13)

The polarization tensor illg, ¢, is obtained by calculating the diagram
with the charges @1 and )2 at the vertices (and without the coupling con-
stant). Thus II;; is the polarization tensor for a charged W, while Il33 is
the polarization tensor for a Z, but using only the coupling that goes with
the W5. We can ignore questions of gauge choice and look only at g, type
terms.

Just to show how these things work, let us isolate the leading contribution
from the Higgs boson. Now this won’t contribute of course to A« since the
neutral Higgs boson doesn’t contribute to the running of the electromagnetic
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coupling. Similarly there is no contribution to T3 since ) here stands for the
electric charge coupling. For our purposes, we can approximate IT;(m%) =
1}, (m%,) = I155(0). Altogether then, the contribution of the Higgs to Ar is

& g2

Ary = ?m—%v[ngg(()) — 113, (0)] + 2¢°I14,(0) (7.14)

There are two kinds of self energy diagrams for the W and Z with Higgs

boson loops. The diagrams where the emission and absorption of the Higgsis
at a single point have the properties

[135(0) = Iy, (0); IT33(0) = 0 (7.15)

and thus don’t contribution to Ary. The other diagrams involve the ZZH
and WW H couplings. From Eq. (4.2) we see that the vertex factors are

WWH : (ig°0/2)gap = 1MW gas
ZZH : (ig*v)2cos* Ow)gas = (igmw/cos® O )gas (7.16)

where « and [ get tied to the polarization indices of the gauge bosons. Now
when we calculate II33 we couple only to the W3 part of the Z, the piece
that has coefficient cos fy,. This just cancels the cos fy factor in the vertex.
Thus the integrals for II33 and II;; are identical except that II33 has mZZ in
it, while I1;; has mj;.

For either II;; or II33 we have

. d"k 1 _i(gaﬁ - kakg/m2)
) = | S
_ (im) / dm/ 9os — (K" — zq)a(K' — 2q)5/m’
(k2 — 22¢2 + xq? — xm3; — (1 — x)m?)?

(7.17)

Since we are concerned solely with the g,s piece of the answer, we retain
only gas and ki kj in the numerator. We make the replacement

ki kly — k”gas/n (7.18)

to obtain

/ da / A m T kﬂ/)z (7.19)
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where m is my or my and

p?=ami + (1 —2)m? — z(1 — 2)¢? (7.20)
Now using the formulae of Appendix D,
—3 — 1 2 2 —
Ti(g?) = il'(2 —n/2) / PR /(2—mn)
1672 0 (NZ)Q_n/Q
I1(q? —il'(2 —n/2) (! 2 —n/2)m?/p? —1/2
TGN T N (CRTD (Tt VE
an 1672 0 (NZ)Q_n/Q
(7.21)
We expand

(B2 =14+ (2—n/2)Inp? = 1+ (2 - n/2)[lnm% + O(m?/m3) (7.22)

SO

) = “TCIE a2/t - (2 - n/2) o
il1(0) = WW + %][1 — (2 —n/2) Inm%]
(7.23)
and
()~ a(0) = “TCZ D r )
x[1 — = 2n][1 + (2 —n/2) Inm3] (7.24)

We are only interested in the mpy dependence. Indeed the terms we
have computed don’t converge by themselves. Only when we include all the
diagrams with internal W's and Zs will the sum converge, since the Higgs is
an integral part of the gauge sector. The surviving my dependent piece is

3, 5 5y 1

[133(0) — 1111 (0) = Z(mz — myy)

In the expression for IT' we can drop the term suppressed by m?/m? and
expand as before to find

Inm3, (7.25)

iagég ) _ W /01 dz[z(1 — 2)/2][1 — (2 — n/2) Inm?]
1 )
6212 (7.26)
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Combining all this,

CQ 2
ATH = —29—2[1_[33 (0) - HII(O)] + 2921_[33(0)
52 myy
2
g° 3 2
_ S ||
T6r201 T gl

= 7\/§GFm%VElnm2
472 12 a

2.5 x 10~ % Inm3, (7.27)

Q

This is really just an indication since we’ve taken my large compared to
my and my.

We anticipate that quark loops will shift the relative masses of the W and
7. However, this effect is suppressed if the quark doublets are degenerate. To
see this, consider Eq.(7.11). For such a doublet, there is an isospin symmetry
so 11}, = Ils3, killing Ap. If we ignore the difference between evaluating Pt
at myz and my,, then we can write

2 2

g
[y (m) = 25" (m)]+ =5 (s = )y (miy) = =257y, (m3) (7.28)

9
52
which vanishes when we sum over the two quarks, which have the same Y/2
but opposite Tj.
The top quark contributes importantly to the shift in the W mass because

the t — b system breaks this “custodial” isospin so strongly. The contribution
to Ar is

3G 2 2 2,2 2
Ar, = - e mf—i—mz— ;ntmb2l 2;
872/252 F—my  mj
my 2
= —0.036 | ——— 7.29
(175 GeV> ( )

We can now determine how much the predicted W mass shifts for a given
shift in m; or my:

1 5
— Smw = —0.186Ar = —0.18[5.0 x 10735 In my — 0.072°2]
mw my
5
= —0.0x 10 % lnmy + 1.3 x 10222 (7.30)
my
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Figure 17: The current values for m; and my are shown, with their uncer-
tainties, along with curves determined by radiative corrections 7.31.

A thorough treatment[30], including higher order corrections gives the
interpolating formula

mw (GeV) = 80.3829 — 0.0579 In(mg/100) — 0.008[In(m /100)]?
Sa® my \ 2
—0.517 H 0.543 <—) —1
(0.0280 + l 175 ]

O!S(Mz)
—0. -1
0085 ( 0.118 )

(7.31)

where the MS scheme has been used and where all masses are in GeV. Curves
for my = 100, 300, 1000 GeV are shown together with the values reported by
the Particle Data Group in 2001 [m; = 174.3+5.1 GeV, my = 80.42240.047
GeV] in Fig.17.
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A Phase Space

Decay rates and cross sections are obtained from the invariant matrix ele-
ment, M, by evaluating the phase space

d®p;
dd =1————=8'(P - pi Al
for the process in question. For the decay of a particle of mass . M,
(2m)* 2
dl' = —— dd A2
M| (A2)
For a two-body process (decay or scattering),
(2m)~°

dd, = A (A.3)

NG Pem
where s is the c.m. energy squared and p.,, is the momentum of either final
state particle in the c.m. Thus for a two-body decay

1 2pcmdQcm
ar= 327r2|M| M?2
For a three-body decay or for scattering to a three-body final state phase
space can be evaluated in several ways. The Dalitz plot form describes the
orientation of the final state plane in the c.m. by three Euler angles, «, 3, and
v. The angles a and ~ are integrated from 0 to 27, while S varies between
0 and 7. The final state particles have energies F;, E5, and F5. The phase

space is given by

(A.4)

1
dq)g = Wdad COS 5d’)/dE1dE2 (A5)

Alternatively, we can treat the problem as a quasi-two-body process, view-
ing particles 1 and 2 as forming a resonance of mass mjs. We then find

dd; = W(]lgpgdmlgdglgdgg (A.6)
where
¢i2 = momentum of 1 in 1 — 2 rest frame
p3 = momentum of 3 in overall rest frame
dS2; = solid angle in 1 — 2 rest frame
dS23 = solid angle in overall rest frame
(A.7)
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We can always decompose n-body phase space by grouping together the
first m particles and the last n — m particles:

Qm = D_Pii Gmiin = D Di (A.8)
7

m+1

with the result

d(I)n(P;pla < Pm;Pm+1 - - -pn) = d(I)Q(P; q1,m, Qm—l—l,n)
X (27r)3inmd(I)m(q1,mapla s pm))

X (2ﬂ)3ng1+1,ndq)n—m (Qm—l—l,n;pm—l—la v

Cross sections are given generally by the expression

4 2
o T ME

~ 4flux factor (A.10)

where

flux factor = \/(kl - kg)? — mim3
= kcm\/g - klabmtarget (All)

where the k’s present the incoming momenta.
For two-body to two-body scattering

do 1 kK,
0. 64nlsk M (A-12)
do 1 9
R Al
dt 647r5| | ( 3)

where k, k' are the initial and final c.m. momenta and ¢t = (k — k')? is the
four-momentum transfer squared.
The connection to the old-fashioned non-relativistic scattering amplitude

fem 18

1
f 87“/5/\4 (A.14)
do 9
= Ul (A15)
4
Otot = il %fcm(oo) (A16)
Pem
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B

Feynman Rules

The Feynman rules for spontaneously broken gauge theories are non-trivial.
The canonical reference is Fujikawa, Lee, and Sanda [31]. Ignoring these
important changes, we recall the traditional rules:

Each vertex is ¢ x £. This follows from the appearance of exp(—i£) in
the evaluation of the S-matrix.

The calculated amplitude is —iM. This follows from the relation be-
tween the S matrix and the invariant amplitude. For example, for
two-body to two-body scattering

PipalSlpip2) = (Pipallpip2)
M(p1,p2, 0, Ph)
2m)2E (27 ) EY(2m) By (27) Ey] /2
(B.1)

_2(271—)46(1711 +p,2 — D1 — pZ) [(

The state normalization is

@'py = 0*(p— p)
1= [ &) (B.2)

so that unitarity, STS = I gives

23 M (p1, pa, Py, Ph) = —(2m)* D d®, M (D), Py, [)* M(p1,p2, ) (B.3)
7

The factor associated with a gradient term in the vertex depends on
whether the momentum flows into or out of the ertex. Since the ex-
pansion of a field in momentum space is

d*k
%0~ | e

the factors are

[a(k)e ™ + a (k)e™ 7], (B.4)

0, — +ik, for outgoing;
d, — —ik, for incoming; (B.5)
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For each incoming or outgoing particle that has spin is there is a wave
fuction. For a massive spin-one particle of momentum ¢ there is a
polarization vector € (incoming) or €* (outgoing) with

e-qg =0 (B.6)
Z@Z@V = _guu+qMQV/m2 (B?)

This is the unitary gauge, which we use for W and Z. For photons, we
can drop the second term as long as we confirm that the electromagnetic
current is properly conserved (J - ¢ = 0).

For a Dirac particle we have the spinors u(p, s) (incoming) and @(p, s)
(outgoing) and for its anti-particle v(p,s) (outgoing) and o(p, s) (in-
coming). These obey the relations

(b= myu = alp—m) =0 (B9
(Bp+m)v = TP+ m)=0; (B.9)
ulp,s.=1/2) = VE+m &.,E’][IO; (B.10)
up.s.=-1/2) = VE+m E.E][OO; (B.11)
v(p,s. =1/2) = VE+m B [01]); (B.12)
T
v(p,s.=—-1/2) = VE+m ETE;][H» (B.13)
sop = 0 : (B.14)
ulp,$)(p, ) = (B m)5(1+59); (B.15)
op, T(p,s) = (b= m)g (147 (B.16)

£
3
NG
=
=
NG
I
AN
_|_
2
w
—_
o

2 s
S
K
=
S
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I I
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3 |
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w
— —
L =



o(p, s)v(p,s) = —2m (B.20)

u(p,s) = ptm u(0, s); (B.21)
2m(E 4+ m)
wps) = 00 (B2
2m(E + m)
(B.23)
Some useful trace relations are
Trdfp = 4a-b (B.24)
Tr ¢hdd = 4(a-bec-d—a-cb-d+a-db-(8.25)
Tr ¢y v, Tr ¢yPdy” = 32(a-cb-d+a-db-c) (B.26)
Tr ¢y vy Tr ¢yPdyys = 32(a-cb-d—a-db-c) (B.27)
(B.28)
Other Dirac matrix identities:
Vuly" = =24
(B.29)
e The propagators are, for a scalar
Z’ .
for a Dirac particle »
i
B.31
— (B.31)
for a massive vector in unitary gauge
[ 2 /e 2
Il i WAL (B.32)

q2_m2

For the photon we drop the second term in the numerator.
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C Breit Wigner Formula

There may be no formula in particle physics as useful as the Breit Wigner
formula for a cross section near a resonance. The traditional non-relativistic
version reads

2J +1 4m I2/4
(281 + 1)(282 + 1) k2 (E — E0)2 + F2/4

- BRiu BRou (C.1)

Here J is the spin of the resonance and Ej is the resonant energy. The spins
of the incident particles are s; and s,. The c.m. energy of the collision is k.
The full-width at half maximum is I'. This is also the lifetime of the resonant
state. The branching ratios are for the resonance decaying into the initial
and final states. We see the unitarity bound for scattering in a single partial
wave in the first two factors.

In a relativistic setting we usually find a form like

2J +1 47 m?2I?

= — - BRiuBRoy C.2
’ (2s1 +1)(2s2+1) k%2 (s —m?)?2+m?[? ' (©2)

arising from the Feynman propagator. The difference between the two forms
vanishes at the resonance itself and thus is equivalent to a non-resonant
contribution.

D Dimensional Regularization

Consider the integral

mn 00 m—1 00 n—2 0
/(dep _/ dpod™q / dpoq" “dqdSl, (D.3)

—m?)®  Jooo (P — ¢ — m? +ie)® Jooo (p§ — q> — m? + i€)®

First let’s see how to do the n-dimensional angular integral. We can deter-
mine this from a single example:

/quequ = 7Tm/2 = /qmildemeleti

0 dv
_ (m—1)/2 —v
= /0 v 512 e /de_1

- %F(m/Q) / A (D.4)

73



So we find
271—7”/2

['(m/2)
Now do the p, integral in the complex plane, picking up the pole of order

a at py = /q* +m?*

o0 dpodn—lq _27_‘_7/ / 5 a a—1 ~
- n=zd _ 2 2 a/ o
/ 2 — e AT (po + /@ +m2)™ [ dQ_s

—o0 (P§ — ¢? — m? + i)

Ay = (D.5)

x /qnfqu\/(m)—%zﬂdgzrh2
(D.6)
Since
_ 1 (20— 2)! a—162a-2 ['(1/2)
a1 (20 +2) = ()R = ()71 - 8/2) - (1)l
_ a—192a— 2F(a—1/2)
= (=1)* 2 (1/2) (D.7)
we find
/OO dpyd™'q _ i (—U“m“*hr(a_ 1/2) 9r(n—1)/2
—o (Pf—¢* —m?)*  (a—1)! L(/2) T((n-1)/2)
X /000 duu™2(u? + 1) *+1/2
(D.8)
Now
I e e e A T (E Rt
_ lF((n—l)/Q)F(a—n/Q)
2 [a—1/2)
(D.9)
Combining the results,
d"p I dpyd™~q B iw”/ZF(a—n/Q)mnfm e
/(p2—m2)“_/oo (05 — > —m?)* I () (=1)
(D.10)
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It is trivial from this to deduce

/ d"pp® _ mn/ZF(O‘ —n/2— 1)mn—2a(_1)a+1mzﬁ
(p* —m?)® [(a) 2

Moreover using
w _
Juvg =1

we can conclude

/ d"pp"p” i7r”/2F(a —n/2-1) nf2a(_1)a+1m2g_‘wj

(p? = m?)* I(a) 2
These three integrals, plus the Feynman tricks
o /1 p 1
AB ~ Jo YwA+(1-2)BP2
1 1 d l1-z d 1
ABC /0 x/o y[a:A—i—yB—l—(l—x—y)C’P

1

are enough to get you out of any tough spot.
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